Kettiethorpe

MATHS

Year 8 | Theta

Name:
Set:

Unit	Topic	Complete
1	Number	
2	Area and Volume	
3	Expressions and Equations	
4	Fractions, Decimals and Percentages	
5	Experimental Probability	
6	Decimals and Ratio	
7	Fractions	
8	Real-life Graphs	
9	Graphs	
10	Lines and Angles	
11	Analysing and Displaying Data	
12	Statistics	

POWERS AND ROOTS

Square root:
$\sqrt{81}=9(9 \times 9=81)$
$\sqrt{25}=5(5 \times 5=25)$

Cube:
$2^{3}=2 \times 2 \times 2=8$
$10^{3}=10 \times 10 \times 10=1000$

Cube root:
$\sqrt[3]{64}=4(4 \times 4 \times 4=64)$
$\sqrt[3]{27}=3(3 \times 3 \times 3=27)$

PRIME FACTORISATION

Write the number as a product of primes (prime numbers that multiply together to make the number)

$$
\begin{aligned}
& \text { E.g. } \\
& \begin{aligned}
\begin{aligned}
& =2 \times 2 \times 2 \times 5 \\
& =2^{3} \times 5
\end{aligned}
\end{aligned} . \begin{array}{l}
\text { a }
\end{array}
\end{aligned}
$$

HCF AND LCM

Highest Common Factor, list the factors of each number and find the largest number which is in both lists
E.g. HCF of 18 and 24: $=6$
18: 1, 2, 3.6. 9,18
24: 1, 2, 3, 4 6. $8,12,24$

Lowest Common Multiple, list the multiples of each number and find the smallest which is in both lists
E.g. LCM of 8 and 14: $=56$

8: $8,16,24,32,40,48,5664$
14: 14, 28, 42,56. 70

Multiplication

Use the column method to multiply numbers.

45	
$\times \quad 23$	
$13^{1} 5$	Remember the place holder 0
$+900^{1}$	
1035	

Literacy

Unscramble the words and give definitions:
limutpel
cafrot
dopruct

Fluency

1) Find the products of prime factors of the following numbers:
a) 18
b) 27
c) 36
2) Find the highest common factor and lowest common multiple of 18 and 27
3) Find the highest common factor and lowest common multiple of 18 and 36

Problem Solving

Bus A leaves Wakefield at 8am and leaves again every 15 minutes.

Bus B leaves Wakefield at 8am as well but then leaves again every 12 minutes.

What is the next time they will leave at the same time?

Reasoning

Zoe has completed her maths homework.
Can you spot any mistakes.
Find the highest common factor of 12 and 24
Factors of 12: 2,3,4,6
Factors of 24: 2, 3, 4, 6, 8, 12
Highest common factor is 6 .

Theta Unit 2: Area and Volume

Area of triangle $=1 / 2 \times$ base \times height

$$
=1 / 2 \times 12 \times 5=30 \mathrm{~cm}^{2}
$$

Area of parallelogram $=$ base \times height

$$
=7 \times 3=21 \mathrm{~m}^{2}
$$

Area of trapezium $=1 / 2(a+b) \times$ height
$=1 / 2(8+6) \times 5$
$=1 / 2 \times 14 \times 5$
$=35 \mathrm{~mm}^{2}$

VOLUME OF CUBE/CUBOID

Volume $=$ length x width x height

$$
=6 \times 2 \times 7=84 \mathrm{~cm}^{3}
$$

SURFACE AREA OF CUBE/CUBOID

Find the area of each face then add them together.

Front $=6 \times 3=18 \mathrm{~cm}^{2}$
Back $=6 \times 3=18 \mathrm{~cm}^{2}$
Top $=6 \times 4=24 \mathrm{~cm}^{2}$
Bottom $=6 \times 4=24 \mathrm{~cm}^{2}$
Left $=4 \times 3=12 \mathrm{~cm}^{2}$
Front $=4 \times 3=12 \mathrm{~cm}^{2}$
Total Surface Area $=18+18+24+24+12+12$ $=108 \mathrm{~cm}^{2}$

Literacy

Write the definition of the following
words:
Area -
Perimeter -
Volume -
Surface area -

Fluency

Find the area of the following shapes:

Problem Solving

The following wall needs to be painted.
A tin of paint costs $£ 7.50$ and will cover $10 \mathrm{~m}^{2}$.
How much will it cost to paint the wall?

12 m

Reasoning

James has answered the following question. Comment on his answer

10 cm

25 mm
$10 \times 25=250 \mathrm{~cm}^{2}$

Theta Unit 3: Expressions and Equations

Expanding Brackets

Use the grid method to multiply everything inside the bracket by the term in front of the bracket:
E.g. $3(5 a-2)=15 a-6$

	$5 a$	-2
3	$15 a$	-6

Factorising

Find the highest common factor of the expression to put the brackets back in:
E.g. $24 \mathrm{~h}+16=8(3 \mathrm{~h}+2)$
(8 is the HCF of 24 h and 16)
$12 x^{2}-9 x=3 x(4 x-3)$
($3 x$ is the HCF of $12 x^{2}$ and $9 x$)

Solving 1-step Equations

Do the inverse to balance the equation to solve:
E.g. $e+5=7$
$3 \mathrm{k}=15$
$\frac{m}{2}=6$
$\begin{array}{llllll}-5 & -5 & \div 3 & \div 3 & x 2\end{array}$
$e=2$
$\mathrm{k}=5$
$\mathrm{m}=12$

Literacy

The following words have had the vowels taken out, what should they say:

xprssn

qtn
xpnd
Fctrs
Slv

Fluency

Solve the following one step equations

1) $4 x=16$
2) $17+x=25$
3) $x-13=15$

Solve the following two step equations

1) $2 x+4=10$
2) $7 x-4=18$
3) $3 x+18=15$

Problem Solving

Alice is x years old. Her friend Bob is 3 years older than her. Bob is 24 years old.
(a) Write down an equation for this information. (b) Solve your equation to find how old Alice is.

Courtney is y years old. Her friend David is 5 years younger than her. David is 18 .
(a) Write down an equation for this information.
(b) Solve your equation to find how old Courtney is.

Reasoning

Alice has answered the following question.
Comment on her method.

$$
\begin{gathered}
3 \mathrm{~h}-11=29 \\
-11=-11 \\
3 \mathrm{~h}=18 \\
\div 3=\div 3 \\
\mathrm{~h}=6
\end{gathered}
$$

Theta Unit 4: Fractions, Decimals and Percentages

Percentage Increase/decrease

Non-calculator:
FIND THE PERCENTAGE THEN ADD/SUBTRACT
E.G.

Increase 450 by 10% : $10 \%=450 \div 10=45$
$450+45=495$
E.G.

Decrease 700 by 28\%:

$$
\begin{aligned}
& 10 \%=700 \div 10=70 \\
& 1 \%=700 \div 100=7 \\
& 28 \%=70 \times 2+7 \times 8=196 \\
& 700-196=-504
\end{aligned}
$$

Using a multiplier:
ADD/SUBTRACT THE PERCENTAGE TO/FROM
100, CHANGE TO A DECIMAL AND MULTIPLY
E.G.

Percentage change

$$
\frac{\text { difference }}{\text { original }} \times 100
$$

E.G.

Find the percentage increase from $£ 60$ to $£ 81$.

$$
81-60=21 \quad \frac{21}{60} \times 100=35 \%
$$

Literacy

Fill in the blanks to spell the following key words:
M \qquad r

P__c \qquad e
De \qquad
Di \qquad

Fluency

Find the following percentage of amounts:

1) 30% of 130
2) 40% of 60
3) 22% of 150

Use a decimal multiplier to apply the following percentage increase or decrease.

1) Increase 40 by 30%
2) Decrease 80 by 28%

Problem Solving

Anthony organises a charity raffle. He sells 500 tickets for $£ 2$ each. 6% of the tickets win a prize that costs $£ 10.65 \%$ of the profit goes to Charity A and the rest goes to Charity B. How much money does Anthony raise for Charity B?

Reasoning

There are 80 teachers in a school. The headteacher says that exactly 89% of the teachers drive to work. Explain why the headteacher is wrong.

Theta Unit 5: Experimental Probability

Calculating Probability

$P($ event $)=$ Number of ways the event can occur
Total number of outcomes

E.g.

The probability of getting a heads when flipping a coin is $\frac{1}{2}=$ 0.5 .

The probability of picking a heart (13 cards) from a full deck of cards (52 cards) $=\frac{13}{52}=\frac{1}{4}=0.25$.

The Probability Scale

The probability scale is between 0 and 1 .
Probabilities may be written as fractions, decimals or percentages.

Experimental Probability

Calculating the probability of an outcome based on data that has been collected.
E.G. A dice has been rolled 60 times.

Result	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$
Frequency	20	5	12	10	7	6
Experimental Probability	$\frac{20}{60}$	$\frac{5}{60}$	$\frac{12}{60}$	$\frac{10}{60}$	$\frac{7}{60}$	$\frac{6}{60}$

Probability $=\frac{\text { Number of times event occured }}{\text { Total number of trials }}$

Is this experiment fair?
No, the dice isn't fair. All numbers should appear around 10 times, but the number 1 appears 20 times.

Literacy

What does the word biased mean?

Fluency

This dice is rolled a large number of times. The results are in the table.

Use these results to estimate the probability of scoring more than 2

Here is a spinner.
It is spun 900 times and the colour it lands on is recorded.

The table shows how the spinner landed. Work out the relative frequencies for each colour.

colour	frequency	P (colour)
red	108	\square
green	306	\square
blue	81	\square
pink	189	\square
yellow	216	\square

At a factory, a sample of batteries is tested to check how long they can last.
Here are the results:

hours	frequency
$0<h \leq 5$	14
$5<h \leq 10$	19
$10<h \leq 20$	42
$20<h \leq 30$	14
$30<h \leq 50$	11

Estimate the probability that a battery of this type will
last 30 hours or less
[2]
last between 20 and 30 hours

Problem Solving

Complete the spinners below:
Even number is impossible 3 is likely
5 is unlikely

A square number is impossible
Odd number is even chance Less then 10 is certain

Reasoning

This spinner is spun a large number of times. The results are in the table.

Is this spinner fair?
Explain your answer.

score	freq
1	62
2	61
3	56
4	60
5	63
6	56
7	63
8	59

Theta Unit 6: Decimals and Ratio

Rounding to Decimal Places

E.G.

Round 2.6483 to 1 decimal place:
Look at the $1^{\text {st }}$ and $2^{\text {nd }}$ number after the decimal point 2.6483

4 is smaller than 5 so the number rounds down to 2.6

Further examples:
7.1893 (2 d.p.) $=7.19$
$53.645(1$ d.p. $)=53.6$

Multiplying Decimals

Use the column method - multiply without the decimal points - estimate first for place value E.G.
2.8×9.4
This is roughly $3 \times 9=27$

So to make 2632 near to 27 we make the answer 26.32

Adding and Subtracting Decimals

Use column method - make sure you line up the decimal point for the correct place value.

$$
\begin{array}{cccc}
2.35+4.5: & 9.67-6.2: \\
2 \cdot 3 & 5 & 9 \cdot 6 & 7 \\
+4 \cdot 5 & & -6 \cdot 2 & \\
\hline 6 \cdot 8 & 5 & 3 \cdot 4 & 7 \\
\hline
\end{array}
$$

Dividing Decimals

Use your short division to divide:
E.G.
$32.7 \div 3=1.09$

$$
3 \longdiv { 1 } \begin{array} { l }
{ 1 \bullet 0 } \\
{ 3 }
\end{array}
$$

$4.65 \div 0.5=46.5 \div 5=9.3$

Literacy

What does the word biased mean?

Fluency

This dice is rolled a large number of times. The results are in the table.

Use these results to estimate the probability of scoring more than 2

Here is a spinner.
It is spun 900 times and the colour it lands on is recorded.

The table shows how the spinner landed. Work out the relative frequencies for each colour.

colour	frequency	P (colour)
red	108	\square
green	306	\square
blue	81	\square
pink	189	\square
yellow	216	\square

At a factory, a sample of batteries is tested to check how long they can last.
Here are the results:

hours	frequency
$0<h \leq 5$	14
$5<h \leq 10$	19
$10<h \leq 20$	42
$20<h \leq 30$	14
$30<h \leq 50$	11

Estimate the probability that a battery of this type will
last 30 hours or less
[2]
last between 20 and 30 hours

Problem Solving

Complete the spinners below:
Even number is impossible 3 is likely
5 is unlikely

A square number is impossible
Odd number is even chance Less then 10 is certain

Reasoning

This spinner is spun a large number of times. The results are in the table.

Is this spinner fair?
Explain your answer.

score	freq
1	62
2	61
3	56
4	60
5	63
6	56
7	63
8	59

Theta Unit 7: Fractions

Fractions of Amounts

E.G.

Find $\frac{3}{5}$ of 400
Step 1: Divide by the denominator.
$400 \div 5=80$
Step 2: Multiply by the numerator $80 \times 3=240$

Multiplying Fractions

You do not need common denominators.
When multiplying: multiply numerators together, multiply denominators together.
E.G.

$$
\frac{2}{5} \times \frac{3}{7}=\frac{2 \times 3}{5 \times 7}=\frac{6}{35}
$$

Remember to simplify.

Dividing Fractions

You do not need common denominators.
When dividing: use the reciprocal of the second fraction, then multiply.
E.G.

Multiply denominators.

Literacy

Give the definition and an example of these key words:

1) denominator
2) numerator
3) simplifying
4) mixed number

Fluency

1a) $\frac{2}{5}+\frac{4}{7}=$
1b) $3 \frac{1}{4}-1 \frac{3}{5}=$

2a) $\frac{5}{8} \times \frac{2}{7}=$
2b) $3 \frac{2}{5} \times \frac{2}{3}=$

3a) $\frac{8}{11} \div \frac{1}{5}=$
2b) $2 \frac{1}{3} \div 1 \frac{4}{5}=$

Problem Solving

Calculate the area and perimeter of this shape

$$
\frac{1}{4}
$$

$\frac{2}{3}$

Reasoning

Explain how you know which of these fractions is the greatest.
$2 \frac{2}{3} \quad \frac{7}{3} \quad \frac{9}{4} \quad 2 \frac{1}{5} \quad 2 \frac{5}{8}$

Theta Unit 8: Real-life Graphs

Conversion Graphs

Using the graph:
Convert $50^{\circ} \mathrm{C}$ into ${ }^{\circ} \mathrm{F}$
Answer: $122^{\circ} \mathrm{F}$
Convert $150^{\circ} \mathrm{C}$ into ${ }^{\circ} \mathrm{F}$
$50^{\circ} \mathrm{C} \times 3=150^{\circ} \mathrm{C}$ so $122^{\circ} \mathrm{F} \times 3=366^{\circ} \mathrm{F}$
Convert $194^{\circ} \mathrm{F}$ into ${ }^{\circ} \mathrm{C}$
Answer: $90^{\circ} \mathrm{C}$

Distance-time Graphs

This graphs shows a walking group's hike.
At what time did the group stop to check directions? 10.15

How far did the group walk to their furthest destination?

How long did they spend at their furthest destination?

45mins
At what time was the group walking quickest? 10.30 - 11.45 (steepest line)

What was the average speed for the return journey?

$$
\begin{aligned}
& \text { Speed }=\text { distance } \div \text { time } \\
& \qquad 6.5 \div 1.75=3.7 \mathrm{~km} / \mathrm{h}
\end{aligned}
$$

Literacy

Can you identify these key words that have been jumbled up. Give their definitions. exas
phrag
laces
donatecori

Fluency

This graph shows Richard's bike ride.

1) What time did Richard stop to by a pond?
2) How long did Richard stop for?
3) What part of Richard's journey was he going the quickest?

Problem Solving

1) For the graph of Richard's walk how much faster was he travelling on the return part of his journey than the first part of his bike ride?
2) What was Richard's average speed for the whole bike ride?

Reasoning

Which of these graphs shows direct proportion?

How do you know?

Theta Unit 8: Graphs

Plotting a linear graph

Using x values from 0 to 5 , draw the graph of $y=2 x+3$
First substitute to find coordinates:

0	1	2	3	4	5
3	5	7	9	11	13

Then plot coordinates and join with a straight line:

Equation of a straight line

$m=3 \div 1=3$
$c=-6$ (crosses y-axis)

So $y=3 x-6$

Midpoint of a line

Find the midpoint of the coordinates $(3,7)$ and $(9,1)$

Find the mean of the x-values and the y-values:

$$
\frac{3+9}{2}=\frac{12}{2}=6 \quad \frac{7+1}{2}=\frac{8}{2}=4
$$

So the midpoint is $(6,4)$

Literacy

What are the definitions of the following key words:

Gradient -

Y-intercept -

Midpoint -

Fluency

Find the gradient of the following lines

Problem Solving

Find the equation of the following lines

Reasoning

Alisha says that the gradient of the line is 2 . Explain her mistake.

Theta Unit 10: Lines and Angles

Quadrilaterals

	$\begin{aligned} & \overline{0} \mathscr{y} \\ & \bar{\partial} \frac{\otimes}{\square} \end{aligned}$						
Square	\checkmark	\checkmark	\checkmark	4	4	\checkmark	\checkmark
Rectangle	opposite	\checkmark	\checkmark	2	2	\checkmark	X
Rhombus	\checkmark	\checkmark	X	2	2	X	\checkmark
Parallelogram	opposite	\checkmark	X	0	2	X	X
Trapezium	2 can	1 pair	can	can	1	can	X
Kite	2 pairs	X	X	1	1	X	\checkmark

Angles in Polygons

Exterior angles sum to 360°
Sum of interior angles:
(no.sides - 2) $\times 180^{\circ}$
Exterior + interior $=180^{\circ}$
(straight line)
REGULAR means all sides and angles equal

Angles in Parallel lines

ALTERNATE ANGLES
(Z SHAPE) ARE EQUAL

CORRESPONDING ANGLES
(F SHAPE)
ARE EQUAL

COINTERIOR ANGLES
(CSHAPE)
SUM TO 180°

Literacy

Explain what the difference between a regular pentagon and an irregular pentagon.
Give key facts about the size of angles.

Fluency

For the following questions find the missing angle and say what rule you have used.

Reasoning

Are lines $A B$ and $C D$ parallel. Give a reason for your answer

Theta Unit 11: Analysing and Displaying Data

Two-way table

Felicity asked 100 students how they came to school one day. Each student walked or came by bicycle or came by car.

49 of the 100 students are girls.
10 of the girls came by car.
16 boys walked.
21 of the 41 students who came by bicycle are boys.
Work out the total number of students who walked to school.

Note: 1 football is 20 people, so half a ball is 10 people!

5. 5. 8. 9.11. 15. 17

Mode is the most common

$$
\text { Mode = } 5
$$

Mean is when you find the sum and divide by the amount of values.

Averages and Range

Median is the middle when arranged in size order.
Median = 9
Range is the biggest subtract the smallest.

Literacy

The following maths words are missing their vowels, can you fill in the vowels to find the words?

- br chrt
- pctgrm
- vrgs

Fluency

Type of drink	Water	Soda	Juice	Milk
Number of votes	9	15	7	4

Type of drink	Water	Soda	Juice	Milk
Number of votes	12	13	9	1

Complete the bar chart
Complete the pictogram

$$
\text { Key: } \frac{\square}{\square}=2 \text { votes }
$$

Survey of preferred drinks

Water	Soda
Suice	
Milk	

Problem Solving

Water	
Soda	
Juice	圂令
Milk	$\}\}$

From the survey 9 people preferred water.
a) How many people were in the survey?
b) How many more people preferred soda to milk?

Reasoning

Why might it not be useful to have a key representing 5 people?

Theta Unit 12: Statistics

- Make sure scale is easy to read.
- Plot points.
- Draw a straight line of best fit. Avoid anomalies.
- Describe correlation: Positive/Negative/None

Scatter Graphs

Tally Chart

Tally chart is used to sort data into groups A line is drawn for each item in a group, with a diagonal line to group every five items making it easier to count

Jack records the car colours in a car park.

Red	Silver	Black	Blue
Blue	Silver	Green	Silver
Silver	Blue	Red	Red
Silver	Red	Silver	Green

Colour	Tally	Total
Red	IIII	4
Black	I	1
Blue	III	3
Green	II	2
Silver	IHI	6

Comparing Distributions

Use these sentence starters:

- The mean/median for \qquad is higher showing
that on average they score more.
- The range for \qquad is bigger showing that the data is more spread and so less consistent.

Pie Chart

The pie chart shows the favourite drink of 20 people.

1) How many prefer cola? $1 / 2$ of people $=20 \div 2=10$
2) How many prefer squash? $1 / 4$ of people $=20 \div 4=5$

Literacy

Find definitions of these words

1. Sector
2. Degrees
3. Frequency

How are the words used when describing a pie chart?

Problem Solving

The favourite cakes of some teachers is shown in the pie chart. 60 preferred chocolate.
a) How many teachers are there in total?
b) How many preferred Lemon cake

Fluency

1) Draw a bar chart for this information

Colour	Frequency
Blue	4
White	5
Red	2
Green	7

2) Draw a pie chart for this information

Type	Frequency	Angle		
Car	45			
Walk	15			
Bus	20			
Bike	10			
90				360°

Reasoning

Team A played 100 games and
Team B played 400 games.
Who won the most games?
How can you tell?
Team A
Team B

