Kettlethorpe HIGH SCHOOL

MATHS Year 8 | Theta

Name:

Set:

Unit	Торіс	Complete
1	Number	
2	Area and Volume	
3	Expressions and Equations	
4	Fractions, Decimals and Percentages	
5	Experimental Probability	
6	Decimals and Ratio	
7	Fractions	
8	Real-life Graphs	
9	Graphs	
10	Lines and Angles	
11	Analysing and Displaying Data	
12	Statistics	

Theta Unit 1: Number

MATHS Year 8 | Half-term 1: Number

Unscramble the words and give definitions:

limutpel

cafrot

dopruct

Fluency

1) Find the products of prime factors of the following numbers: a) 18 b) 27

2) Find the highest common factor and lowest common multiple of 18 and 27

c) 36

3) Find the highest common factor and lowest common multiple of 18 and 36

Problem Solving

Bus A leaves Wakefield at 8am and leaves again every 1 5minutes.

Bus B leaves Wakefield at 8am as well but then leaves again every 12 minutes.

What is the next time they will leave at the same time?

Reasoning

Zoe has completed her maths homework. Can you spot any mistakes. Find the highest common factor of 12 and 24 Factors of 12: 2,3,4,6 Factors of 24: 2, 3, 4, 6, 8, 12 Highest common factor is 6.

Theta Unit 2: Area and Volume

Year 8| Half-term 2: Area and Volume

MATHS

Theta Unit 3: Expressions and Equations

Year 8 | Half-term 2: Expressions and Equations

MATHS

Expanding Brackets

Use the grid method to multiply everything inside the bracket by the term in front of the bracket:

E.g. 3(5a - 2) = 15a - 6 5a - 23 15a -6

Factorising

Find the **highest common factor** of the expression to put the brackets back in:

E.g. 24h + 16 = 8(3h + 2)(8 is the HCF of 24h and 16)

 $12x^2 - 9x = 3x(4x - 3)$ (3x is the HCF of $12x^2$ and 9x)

Solving 1-step Equations

Do the inverse to balance the equation to solve:

E.g.	e + 5	= 7	3k = 15	$\frac{m}{2} = 6$
	-5	-5	÷3 ÷3	x2 x2
	e =	: 2	k = 5	m = 12

Solving Equations

Do the inverse to balance the equation to solve:

E.g.	2h – 7 = 11	5x - 4 = 2x + 20
	+7 +7	-2x -2x
	2h = 18	3x - 4 = 20
	÷2 = ÷2	+4 +4
	h = 9	3x = 24
		÷3 ÷3
		x = 8

The following words have had the vowels taken out, what should they say:

qtn

xpnd

Fctrs

Slv

Fluency

Solve the following one step equations

1) 4x = 16 2) 17 + x = 25 3) x - 13 = 15

Solve the following two step equations

1) 2x + 4 = 10 2) 7x - 4 = 18

3) 3x + 18 = 15

Problem Solving

Alice is x years old. Her friend Bob is 3 years older than her. Bob is 24 years old.

(a) Write down an equation for this information.(b) Solve your equation to find how old Alice is.

Courtney is y years old. Her friend David is 5 years younger than her. David is 18.

(a) Write down an equation for this information.

(b) Solve your equation to find how old Courtney is.

Reasoning

Alice has answered the following question. Comment on her method.

3h - 11 = 29-11 -11 3h = 18 $\div 3 = \div 3$ h = 6

Theta Unit 4: Fractions, Decimals and Percentages

Percentages of amounts	Percentage Increase/decrease	E S
<u>Non Calculator:</u> 50% = ÷2 10% = ÷10 1% = ÷100	<u>Non-calculator:</u> FIND THE PERCENTAGE THEN ADD/SUBTRACT	CHO
E.G Find 21% of 600: 10% = 600 ÷ 10 = 60 1% = 600 ÷ 100 = 6 21% = 60 x 2 + 6 = 126	E.G. Increase 450 by 10%: 10% = 450 ÷ 10 = 45 450 + 45 = 495	0L
Using a multiplier: CHANGE THE PERCENTAGE TO A DECIMAL THEN MULTIPLY E.G.	Decrease 700 by 28%: $10\% = 700 \div 10 = 70$ $1\% = 700 \div 100 = 7$ $28\% = 70 \times 2 + 7 \times 8 = 196$ 700 - 196 = 504	Year 8 Hal
Find 21% of 600 21% ÷ 100 = 0.21 600 x 0.21 = 126	<u>Using a multiplier:</u> ADD/SUBTRACT THE PERCENTAGE TO/FROM 100, CHANGE TO A DECIMAL AND MULTIPLY	f-term 2: <i>I</i> Perce
Percentage change $\frac{difference}{original} \times 100$	E.G. Increase 450 by 10%: 100% + 10% = 110% 110% ÷ 100 = 1.1 450 x 1.1 = 495	⁻ ractions, De Intages
E.G. Find the percentage increase from £60 to £81.	E.G. Decrease 700 by 28%: 100% - 28% = 72% 72% ÷ 100 = 0.72 700 x 0 72 = 504	ecimals ar
$81 - 60 = 21 \qquad \frac{21}{60} \times 100 = 35\%$	100 x 0.12 - 304	nd

(ettlethorpe

MATHS

Fill in the blanks to spell the following key words:

M___p__r

P_c__e De

Di

Fluency

Find the following percentage of amounts:

1) 30% of 130 2) 40% of 60

3) 22% of 150

Use a decimal multiplier to apply the following percentage increase or decrease.

1) Increase 40 by 30%

2) Decrease 80 by 28%

Problem Solving

Anthony organises a charity raffle. He sells 500 tickets for £2 each. 6% of the tickets win a prize that costs £10. 65% of the profit goes to Charity A and the rest goes to Charity B. How much money does Anthony raise for Charity Β?

Reasoning

There are 80 teachers in a school. The headteacher says that exactly 89% of the teachers drive to work. Explain why the headteacher is wrong.

Theta Unit 5: Experimental Probability

Calculating Probability

P (event) = <u>Number of ways the event can occur</u> Total number of outcomes

E.g.

The probability of getting a heads when flipping a coin is $\frac{1}{2} = 0.5$. The probability of picking a heart (13 cards) from a full deck of cards (52 cards) = $\frac{13}{52} = \frac{1}{4} = 0.25$.

The Probability Scale

The probability scale is between 0 and 1. Probabilities may be written as fractions, decimals or percentages.

Experimental Probability

Calculating the probability of an outcome based on data that has been collected.

E.G. A dice has been rolled 60 times.

Result	1	2	3	4	5	6
Frequency	20	5	12	10	7	6
Experimental Probability	$\frac{20}{60}$	$\frac{5}{60}$	$\frac{12}{60}$	$\frac{10}{60}$	$\frac{7}{60}$	$\frac{6}{60}$

 $\label{eq:probability} \textit{Probability} = \frac{\textit{Number of times event occured}}{\textit{Total number of trials}}$

Is this experiment fair?

No, the dice isn't fair. All numbers should appear around 10 times, but the number 1 appears 20 times. ettlethorpe

What does the word biased mean?

Fluency

more than 2

2

This dice is rolled a large number of times. The results are in the table.

\wedge	score	freq
	1	103
72	2	93
	3	100
	4	104
lse these results to estim	ate	

the probability of scoring

Here is a spinner. It is spun 900 times and the colour it lands on is recorded.

The table shows how the spinner landed. Work out the relative frequencies for each colour.

colour	frequency	P(colour)
red	108	
green	306	
blue	81	
pink	189	
yellow	216	

At a factory, a sample of batteries is tested to check how long they can last. Here are the results:

hours	frequency	Estimate the probability that a battery of this type will		
$0 < h \leq 5$	14			
$5 < h \le 10$	19	last 30 hours or less	[2]	
$0 < h \leq 20$	42		[-]	
$0 < h \leq 30$	14	last between 20 and 30 hours	[2]	
$0 < h \leq 50$	11		[-]	

Problem Solving

Complete the spinners below:

Even number is impossible 3 is likely 5 is unlikely

62

61 56

60

63

56

63

59

A square number is impossible Odd number is even chance Less then 10 is certain

Reasoning

Theta Unit 6: Decimals and Ratio

Rounding to Decimal Places

E.G. Round 2.6483 to 1 decimal place: Look at the 1st and 2nd number after the decimal point 2.6 483 4 is smaller than 5 so the number rounds down to 2.6

Further examples: 7.1893 (2 d.p.) = 7.19 53.645 (1 d.p.) = 53.6

Multiplying Decimals

Use the column method – multiply without the decimal points - estimate first for place value E.G.

2.8 x 9.4

This is roughly $3 \times 9 = 27$

So to make 2632 near to 27 we make the answer 26.32

Adding and Subtracting Decimals

Use column method - make sure you line up the decimal point for the correct place value.

2.35 + 4.5:	9.6	7 – 6.2:
2 • 3 5	5	9•67
+ 4 • 5		- 6 • 2
6 • 8 5	<u>; </u>	3•4 7

Year 8 | Half-term 3: Decimals and Ratic MATHS

(ettlethorp

Dividing Decimals

Use your short division to divide:

E.G. $32.7 \div 3 = 1.09$ $3 \overline{) 3 \cdot 2 \cdot 7}$ $4.65 \div 0.5 = 46.5 \div 5 = 9.3$

What does the word biased mean?

Fluency

more than 2

2

This dice is rolled a large number of times. The results are in the table.

\wedge	score	freq
	1	103
72	2	93
	3	100
	4	104
lse these results to estim	ate	

the probability of scoring

Here is a spinner. It is spun 900 times and the colour it lands on is recorded.

The table shows how the spinner landed. Work out the relative frequencies for each colour.

colour	frequency	P(colour)
red	108	
green	306	
blue	81	
pink	189	
yellow	216	

At a factory, a sample of batteries is tested to check how long they can last. Here are the results:

hours	frequency	Estimate the probability that a batter	ry of this type will
$0 < h \leq 5$	14		
$5 < h \le 10$	19	last 30 hours or less	[2]
$0 < h \leq 20$	42		[-]
$0 < h \leq 30$	14	last between 20 and 30 hours	[2]
$0 < h \leq 50$	11		[-]

Problem Solving

Complete the spinners below:

Even number is impossible 3 is likely 5 is unlikely

62

61 56

60

63

56

63

59

A square number is impossible Odd number is even chance Less then 10 is certain

Reasoning

Theta Unit 7: Fractions

Fractions of Amounts

E.G. Find $\frac{3}{5}$ of 400

Step 1: Divide by the denominator. $400 \div 5 = 80$ Step 2: Multiply by the numerator $80 \times 3 = 240$

Adding and subtracting fractions

Remember you need to make a common denominator.

Do not add the denominators together, this will stay the same.

E.G.

Multiplying Fractions

You do not need common denominators.

When <u>multiplying</u>: multiply numerators together, multiply denominators together.

E.G.

$$\frac{2}{5} \times \frac{3}{7} = \frac{2 \times 3}{5 \times 7} = \frac{6}{35}$$

Remember to simplify.

Dividing Fractions

You do not need common denominators.

When <u>dividing</u>: use the reciprocal of the second fraction, then multiply.

E.G.

Literacy		Problem Solving
Give the definition and an examp	ble of these key words:	
1) denominator		Calculate the area and perimeter of this shape
2) numerator		<u>1</u>
3) simplifying		4
4) mixed number		2
		3
Fluency		
1a) $\frac{2}{5} + \frac{4}{7} =$	1b) $3\frac{1}{4} - 1\frac{3}{5} =$	
\sim 5^{2}	$a > a^2 = a^2$	
2a) $\frac{1}{8} \times \frac{1}{7} =$	2b) $3\frac{1}{5} \times \frac{1}{3} =$	Reasoning
		Explain how you know which of these fractions is the greatest.
0 1	1 4	$2\frac{2}{2}$ $\frac{7}{2}$ $\frac{9}{2}$ $\frac{1}{2}$ $\frac{5}{2}$
3a) $\frac{3}{11} \div \frac{1}{5} =$	2b) $2\frac{1}{3} \div 1\frac{4}{5} =$	3 3 4 5 8

Theta Unit 8: Real-life Graphs

Using the graph: Convert 50°C into °F

Convert 150°C into °F

50°C x 3 = 150°C so 122°F x 3 = 366°F

Convert 194°F into °C

Answer: 90°C

Distance-time Graphs

This graphs shows a walking group's hike.

At what time did the group stop to check directions? 10.15 How far did the group walk to their furthest destination?

6.5km How long did they spend at their furthest destination?

45mins At what time was the group walking quickest? 10.30 – 11.45 (steepest line) What was the average speed for the return journey?

> Speed = distance \div time 6.5 \div 1.75 = 3.7km/h

ttlethol

Can you identify these key words that have been jumbled up. Give their definitions.

exas

phrag

laces

donatecori

Fluency

This graph shows Richard's bike ride. 70 from home (km) 60 40 Distance 30 20 10 09:00 10:00 11:00 12:00 13:00 14:00 Time What time did Richard stop to by a pond? 1)

- 2) How long did Richard stop for?
- 3) What part of Richard's journey was he going the quickest?

Problem Solving

 For the graph of Richard's walk how much faster was he travelling on the return part of his journey than the first part of his bike ride?

2) What was Richard's average speed for the whole bike ride?

Reasoning

Theta Unit 8: Graphs

(ettlethorpe

Year 8 | Half-term 5: Graphs MATHS

0

-3

-1

5 x

3

3

4

 $\frac{7+1}{2} = \frac{8}{2} = 4$

What are the definitions of the following key words:

Gradient -

Y-intercept -

Midpoint -

Fluency

Find the gradient of the following lines

Problem Solving

Find the equation of the following lines

Reasoning

Alisha says that the gradient of the line is 2. Explain her mistake.

Theta Unit 10: Lines and Angles

Quadrilaterals

	Equal sides	Opposite sides Parallel	Right angles	Lines of symmetry	Rotational symmetry	Diagonals equal length	Diagonals cross right angles
Square	~	~	✓	4	4	✓	✓
Rectangle	opposite	✓	✓	2	2	✓	х
Rhombus	✓	✓	х	2	2	х	✓
Parallelogram	opposite	✓	х	0	2	х	х
Trapezium	2 can	1 pair	can	can	1	can	х
Kite	2 pairs	x	х	1	1	х	\checkmark

MATHS

Year 8 | Half-term 5: Lines and Angles

(ettlethorpe

Explain what the difference between a regular pentagon and an irregular pentagon.

Give key facts about the size of angles.

Fluency

For the following questions find the missing angle and say what rule you have used.

Problem Solving

1) For the following questions find the missing angles giving reasons for each angle.

Reasoning

Are lines AB and CD parallel. Give a reason for your answer

Theta Unit 11: Analysing and Displaying Data

Two-way table

Felicity asked 100 students how they came to school one day. Each student walked or came by bicycle or came by car.

49 of the 100 students are girls.

10 of the girls came by car.

16 boys walked.

21 of the 41 students who came by bicycle are boys.

Work out the total number of students who walked to school.

Mode = 5

Mean = 10

Pictograms

Example, put the following information into a pictogram.

Week	No of people at a	
	football club	
1	55	
2	60	
3	65	
4	40	
5	70	

Note: 1 football is 20 people, so half a ball is 10 people!

5. 5. 8. 9. 11. 15. 17

Mode is the most common

Mean is when you find the sum and

divide by the amount of values.

Averages and Range

Median is the middle when arranged in size order.

Median = 9

Range is the biggest subtract the smallest.

Range = 12

Year 8 Half-term 6: Analysing and Displaying Data MATHS tlethori

The following maths words are missing their vowels, can you fill in the vowels to find the words?

- br chrt
- pctgrm
- vrgs

Fluency

Type of drink	Water	Soda	Juice	Milk
Number of votes	9	15	7	4

Complete the pictogram

Key: = 2 votes

Water	
Soda	
Juice	
Milk	

Туре от	f drink	Water	Soda	Juice	Milk
Number	of votes	12	13	9	1

Complete the bar chart

Problem Solving

From the survey 9 people preferred water.

- a) How many people were in the survey?
- b) How many more people preferred soda to milk?

Reasoning

Why might it not be useful to have a key representing 5 people?

Theta Unit 12: Statistics

Scatter Graphs

- Make sure scale is easy to read.
- Plot points.
- Draw a straight line of best fit. Avoid anomalies.
- Describe correlation: Positive/Negative/None

Tally Chart

Tally chart is used to sort data into groups A line is drawn for each item in a group, with a diagonal line to group every five items making it easier to count

Jack records the car colours in a car park.

Red	Silver	Black	Blue
Blue	Silver	Green	Silver
Silver	Blue	Red	Red
Silver	Red	Silver	Green

Colour	Tally	Total
Red		4
Black		1
Blue	=	3
Green	=	2
Silver	Ш.	6

Comparing Distributions

Use these sentence starters:

- The mean/median for _____ is higher showing that on average they score more.
- The range for _____ is bigger showing that the data is more spread and so less consistent.

MATHS Year 8 | Half-term 6: *Statistics*

Find definitions of these words

- 1. Sector
- 2. Degrees
- 3. Frequency

How are the words used when describing a pie chart?

Fluency

1) Draw a bar chart for this information

Colour	Frequency
Blue	4
White	5
Red	2
Green	7

2) Draw a pie chart for this information

Problem Solving

chocolate.

The favourite cakes of some teachers is

Туре	Frequency	Angle
Car	45	
Walk	15	
Bus	20	
Bike	10	
	90	360°

Reasoning

