Kettlethorpe

MATHS

Year 10 | Delta

Name:

Set:

Unit	Topic	Complete
1	Percentages	
2	Multiplicative Reasoning	
3	Averages	
4	Representing Data	
5	Scatter Graphs	
6	Linear Graphs	
7	Quadratic, Cubic and Other Graphs	
8	Real Life Graphs	
9	Inequalities	
10	Graphs of Trigonometric Functions	
11	Perimeter and Area	
12	$3 D$ Shapes	
13	Constructions and Loci	
14	Similarity and Congruence	
15	Further Trigonometry	

Delta Unit 1: Percentages

Prior Knowledge

Express a given number as a percentage of another number, including where the percentage is greater than 100\%.
E.G. Express $\frac{57}{60}$ as a percentage $\frac{57}{60}=\frac{19}{20}=\frac{95}{100}=$ 95\%

Find a percentage of a quantity.
E.G.: Find 30% of 70

Without calculator $10 \%=7$, so $30 \%=7 \times 3=21$
With calculator $\frac{30}{100} \times 70=21$

Calculate percentage change with or without a multiplier.
E.G. Increase 70 by 30%

Without multiplier, find $30 \%=21$ add this to original $70+21=91$
With multiplier 100\%+30\%=130\%=1.3 70x1.3=91
Find an original quantity after a percentage change. E.G. Cost of a ticket has been increased by 12.5% to £225, find the original amount.
$£ 225 \div 1.125=£ 200$.
Calculate repeated percentage change.
E.G. George invests $£ 4800$ at 3% a year, calculate the amount at the end of 5 years.

$$
4800 \times 1.03^{5}=£ 5564.52
$$

Reverse Compound Percentages

Example

James invests $£ 6000$ for 5 years, at $\mathrm{x} \%$ a year.
At the end of 5 years, the investment is worth $£ 8029.35$.
Work out the value of x.

Answer:

Let y be the multiplier:

$$
\begin{gathered}
6000 \times y^{5}=8029.35 \\
y^{5}=\frac{8029.35}{6000} \\
y=\sqrt[5]{\frac{8029.35}{6000}} \\
y=1.059999
\end{gathered}
$$

If this is the multiplier then the increase is 6%.

Example 2

Katy invests $£ 2000$ for 3 years. She receives interest per year of:
2.5\% for the first year.

X\% for the second and third year.
There is a total of $£ 2124.46$ at the end of the 3 years. Work out the value of x.

Answer: Let y be the multiplier for the second and third year.

$$
\begin{gathered}
2000 \times 1.025 \times y^{2}=2124.46 \\
y=\sqrt{\frac{2124.46}{2000 \times 1.025}} \\
y=1.017999
\end{gathered}
$$

Therefore the increase, x , is 1.8%.

Literacy

Explain how you would find the multiplier to work out a 2.5% decrease.

Reasoning

Chloe is given a 10% pay rise. The next year Chloe is given another 10% pay rise. Her manager says that Chloe's pay has increased by 20\% overall. Explain why Chloe's manager is wrong.

Fluency

Percentages of amounts non calculator

1) Find 35% of 160
2) Increase $£ 140$ by 15%
3) Decrease 240 kg by 45%
4) The cost of a shirt was reduced by 20% in a sale. The shirt costs $£ 56$ in the sale. What was its original price?

Percentages of amounts, calculator allowed, use multipliers to

1) Find 2.3% of $£ 140$
2) Increase $£ 270$ by 6.5%
3) Decrease 180 kg
by 3.5%
4)The cost of a laptop was reduced by 35% in a sale. The laptop costs $£ 325$ in the sale. What was its original price?

Problem Solving

James invests $£ 5000$ for 4 years, at $x \%$ a year. At the end of 4 years, the investment is worth $£ 5627.54$
Work out the value of x

Katy invests $£ 4500$ for 3 years. She receives interest per year of:
1.5\% for the first year

X\% for the second and third year.
There is a total of $£ 4752.03$ at the end of the 3 years. Work out the value of x

Delta Unit 2: Multiplicative Reasoning

Prior Knowledge

Use simple unitary proportion.

Understand scaling recipes.

Rearrange formulae.
Solve equations.
Work out best buys.
Use the kinematics formulae.

Fractions and Ratio

The denominator of the fraction is the total number of parts added together.
E.G.
$\underset{\substack{4+3=7}}{4: 3}=\frac{4}{7}: \frac{3}{7}$

Best Buys

Example

Pack of 4
toilet rolls £1.96

Which pack offers the best value for money?

We need to work out the cost for 1 toilet roll from each.

Option 1 (9 rolls)
1 toilet roll costs
$£ 4.23 \div 9=47$ p
Option 2 (4 rolls)
1 toilet roll costs
$£ 1.96 \div 4=49$ p
Conclusion: Option 1 is better value

You must always show your working on these questions.

Simple Compound Measures

You must know and be able to use the formulas and be able to rearrange them when needed.

$$
\begin{gathered}
\text { speed }=\frac{\text { distance }}{\text { time }} \quad \text { density }=\frac{\text { mass }}{\text { volume }} \\
\text { pressure }=\frac{\text { force }}{\text { area }}
\end{gathered}
$$

You will also need to be able to convert between their measures, i.e. convert between mph and miles per minute.

Harder Compound Measures

Use a table to help you organise your working out. This is helpful when there are multiple parts to journeys.

Example:

Sienna travels from Birmingham to Leeds at an average speed of 60 mph .
She then travels from Leeds to Darlington at an average speed of 40 mph .
The distance from Birmingham to Leeds is 150 miles.
The distance from Leeds to Darlington is 70 miles.
Calculate Sienna's average speed.

	B TO L	LTO D	TOTAL B TO D
SPEED	60 mph	40 mph	51.76 mph
DISTANCE	150 miles	70 miles	220 miles
TIME	2.5 h	1.75 h	4.25 h

Literacy

Reasoning

Write the definition of density

Write the definition of mass

If wood has density less than $1 \mathrm{~g} / \mathrm{cm}^{3}$ it will float.
Which of these will be best for building a toy boat?

Fluency

The distance from Caxby to Drone is 45 miles.
The distance from Drone to Elton is 20 miles.

Colin drives from Caxby to Drone. Then he drives from Drone to Elton.
Colin drives from Caxby to Drone at an average speed of 30 mph .
He drives from Drone to Elton at an average speed of 40 mph .
Work out Colin's average speed for the whole journey from Caxby to Elton.

Problem Solving

The diagram below shows a solid block of ice.

A block of ice weighs $1 / 2$ tonne.
The block is a cube with side length 81 cm .
Find the density of the ice.
Give your answer in kilograms per cubic metre.

Delta Unit 3: Averages

Prior Knowledge

Understand the difference between quantitative and qualitative data.

Understand the difference between continuous and discrete data.

Put data into a frequency table.

Put data into a grouped frequency table.

Find the averages, mode, mean and median for a data set.

Find the range for a data set.

Compare data using an average and range.

Median and Mode from Frequency Table

Here is a table showing the number of goals scored in 10 football matches.

Number of goals	Frequency
0	2
1	2
2	5
3	1

Mode $=2$ (the class with highest frequency)

The median is the class containing the $5.5^{\text {th }}$ data point.

Number of goals	Frequency	Cumulative
0	2	2
1	2	$2+2=4$
2	5	$4+5=9$
3	1	$9+1=10$

The $5.5^{\text {th }}$ data is set is the category for 2 , therefore the median is 2 .

Mean from Frequency Table

To find the mean, you need to find the total number of goals scored.

Number of goals, g	Frequency, f	gxf
0	2	0
1	2	2
2	5	10
3	1	3

Total goals $0+2+10+3=15$.
Mean $=15 \div 10=1.5$ goals per game.

Remember

When the data is grouped like below, we estimate the mean using the midpoint for each interval.

Length $(I, \mathrm{~cm})$	Midpoint (M)	Frequency, f	Mxf
$10</ \leq 20$	15	10	150
$20</ \leq 40$	30	30	900
$40</ \leq 50$	45	20	900

Estimated total length $=150+900+900=$ 1950.

Estimated Mean $=1950 \div 60=32.5$ goals per game.

Literacy

Explain the meaning of quantitative and qualitative data.

Fluency

Calculate the mean, median and mode from each table.
(a)
(b)
(c)

Mass	Frequency
$20<m \leq 25$	12
$25<m \leq 30$	24
$30<m \leq 35$	17
$35<m \leq 40$	15
$40<m \leq 45$	4

Age	Frequency
5	2
6	2
7	5
8	1

Number of phones	Frequency
0	1
1	3
2	2
3	0
4	4
5	0

(d)

Height	Frequency
$120<h \leq 130$	51
$130<h \leq 140$	120
$140<h \leq 150$	66
$150<h \leq 160$	59
$160<h \leq 170$	4

Problem Solving

Test Scores		
	BOYS	GIRLS
Mean	32 marks	40 marks
Range	18	15

Compare the distributions of boys and girls test scores.

Reasoning

Decide if the statements are true or false. Give a reason for each of your answers.

Score	Frequency	```A The data set contains exactly }1 values.```	B The median is	C The mean can't
11	3		13 becuase it's in the middle of:	only whole numbers
12	3		11, 12, 13, 14, 15.	could be s
13	2	D The mean score is 2.4.	E	F
14	3		The data is discrete.	The modal value
15	1			

E
The data is discrete.
The modal value
is 3 .

Delta Unit 4: Representing Data

Prior Knowledge

Understand the difference between quantitative and qualitative data, and also between continuous and discrete data.

Compare data using an average and range.

Draw and interpret composite and dual bar charts.

Draw and interpret pie charts.

Misleading Graphs

When reading graphs, make sure they:

- Have accurate scales.
- Tell you the total (pie charts).
- Represents the full picture.
- Plotted correctly.

Constructing a Histogram

Histograms are used to represent continuous data. We plot bars that are the width of the classes, but for the height, we use frequency density, which is given by the formula:

$$
\text { Frequency density }=\frac{\text { frequency }}{\text { class width }}
$$

HEIGHT (CM)	FREQUENCY	CLASS WIDTH	FREQUENCY DENSITY
$65<\mathrm{h} \leq 75$	2	10	$2 / 10=0.2$
$75<\mathrm{h} \leq 80$	7	5	$7 / 5=1.4$
$80<\mathrm{h} \leq 90$	21	10	$21 / 10=2.1$
$90<\mathrm{h} \leq 105$	$\mathbf{1 5}$	$\mathbf{1 5}$	$15 / 15=\mathbf{1}$
$105<\mathrm{h} \leq 110$	$\mathbf{1 2}$	5	$12 / 5=2.4$

Interpret Histograms

When Given a Histogram the key is to remember frequency = Area

Example:

The following Histogram represents the speeds at which people were travelling, estimate the number of people travelling between 10 mph and 40 mph .

We need to calculate the area of the two rectangles.

Rectangle $1=10 \times 2=20$ people Rectangle $2=20 \times 6=120$ people

LITERACY

Explain the meaning of discrete and continuous data.

FLUENCY AND REASONING

a) Draw a histogram to represent the heights of trees in metres.

Height (\boldsymbol{h} metres)	Frequency
$0<h \leq 2$	7
$2<h \leq 4$	14
$4<h \leq 8$	18
$8<h \leq 16$	24
$16<h \leq 20$	10

b) John says 25% of trees are greater than 10 m .

Is he correct?

Use your histogram to check.

Delta Unit 5: Scatter Graphs

Plot coordinates.
Read diagrams.
Plot a scatter graph.

Interpreting Correlation

A frequency polygon is used to plot grouped data, it is plotted as mid-point against frequency, the points are then joined using a ruler.

Positive correlation means as one variable increases so does the other variable. Negative correlation means as one variable increases the other variable decreases. No correlation means there is no relationship between the two variables.

Remember: Correlation does not mean causation! Buying ice cream won't increase the temperature

Interpolation and Extrapolation

Scatter diagrams can be used to make estimates, first we need to draw a line of best fit.

Example: For the data in the example, estimate how many umbrellas would be sold when there is 3 mm of rain.

Therefore reading from our line of best fit, we'd estimate 19 umbrellas to be sold.
This is interpolation as it is within the data range we have.
When we are asked to do this outside of the data range, like for example if we were asked to estimate for 10 mm of rain, this is called extrapolation and is less accurate as we have no data in this range.

LITERACY

Explain what is meant by extrapolation and interpolation.

FLUENCY AND REASONING

The scatter graph shows information about 10 adult snakes of the same type.
It shows the length and weight of each snake.
An adult snake of this type has a weight of 740 g .
(a) Use the scatter graph to estimate the length of this snake.

Another snake measured 68 cm and had a weight of 848 g (b) Show this information on the scatter graph.
(c) This snake is an outlier, give a possible reason for this.

Steven wants to estimate the weight of an adult snake of length 110 cm .
He says he will draw a line of best fit and read off the weight at 110 cm .
(b) Explain what is wrong with his method.

Delta Unit 6: Linear Graphs

Prior Knowledge

Plot Linear graphs.
Identify the gradient ,m, of a linear graph.

Find the equation of a straight-line graph in the form $\mathrm{y}=\mathrm{mx}+\mathrm{c}$.

Equation of a Line Given Two Points

To find the equation of a line between two points, first it's good to draw a picture, find the gradient between the two points, then use this in the equation for m and use one point to find the intercept.
E.G. Find the equation of the line that passes through the points $(3,5)$ and $(7$, 19).

$$
\begin{array}{rlr}
(7,17) & \text { Gradient }=\frac{17-5}{7-3}=\frac{12}{4}=3 & \text { so } \mathrm{y}=3 \mathrm{x}+ \\
\mathrm{c} \\
5 & 5 \times 3+\mathrm{c} \\
5 & \\
5 & =9+\mathrm{c} & \text { Answer } \mathrm{y}=3 \mathrm{x}-4
\end{array}
$$

Identify perpendicular lines, remember the gradients are the negative reciprocal of one another.

Application

E.G. A has coordinates $(-3,0), B$ has coordinates $(1,6), C$ has coordinates $(5,2)$

Find an equation of the line that passes through C and is perpendicular to $A B$.
Give your equation in the form $a x+b y=c$ where a, b and c are integers.
Gradient $\mathrm{AB}=\frac{6-0}{1--3}=\frac{6}{4}=\frac{3}{2} \quad$ New gradient perpendicular to $\frac{3}{2}$ so is $-\frac{2}{3}$

$0=\frac{3}{2} \times 3+c$
Goes through $(5,2)$ so $2=-\frac{2}{3} \times 5+$ c
$0=\frac{9}{2}+c$
$-4.5=c$

$$
\begin{aligned}
& 2=-\frac{10}{3}+c \\
& \frac{16}{3}=c \quad y=-\frac{2}{3} x+\frac{16}{3} \rightarrow 3 y=-2 x+16
\end{aligned}
$$

Literacy

Give the definitions of the words parallel and perpendicular.

Reasoning

A line has the equation $y=2 x-3$.
Student A says: the perpendicular gradient is -2
Student B Says: the perpendicular gradient is $\frac{1}{2}$
Comment on their answers

Fluency

Find the equations of these lines.

Find the equation of the line that passes through the points $(4,7)$ and $(6,15)$

Write down the equation of each of the following line parallel to $y=3 x+5$ and passing through (0, 2)

Write down the equation of each of the following line perpendicular to $y=2 x+4$ and passing through (0,3)

Problem Solving

Do the points $(1,4),(4,10)$ and $(9,20)$ lie in a straight line?

Delta Unit 7: Quadratic, Cubic and Other Graphs

Prior Knowledge

Plot linear graphs.
Solve linear equations.
Substitute into quadratic expressions.

Complete a table of values for and plot a quadratic graph. E.G. plot the graph of $y=$ $x^{2}-x-6$

\boldsymbol{x}	\boldsymbol{y}
-3	6
-2	0
-1	-4
0	-6
1	-6
2	-4
3	0
4	6

Equation of a circle

The equation of a circle comes in a general form of $x^{2}+y^{2}=r^{2}$
The circle is centred on the origin and has a radius of r.
E.G.

Draw the graph with the equation $x^{2}+y^{2}=25$.

Literacy

Explain what roots of an equation means.

Fluency

Here are six graphs. Give the name of each type of graph.

Write down the letter of the graph that could have the equation

1) $y=2^{x}$
2) $y=x^{3}-3 x$
3) $y=3 x$
4) $y=x^{3}-3 x$
5) $y=x^{2}-5$

Problem Solving

Reasoning

Complete the table of values for $y=2 x^{2}-1$

x	-2	-1	0	1	2
y	7			1	

On the grid below, draw the graph of $y=2 x^{2}-1$ for values of x from $x=-2$ to $x=2$

Use your graph to write down estimates of the solutions of the equation $2 x^{2}-1=0$

Delta Unit 8: Real Life Graphs

Prior Knowledge

Plot coordinates in all 4 quadrants.

Find the mid-point of a line segment.

Use Pythagoras on right-angle triangles.

Use a conversion graph.
Draw and interpret distancetime graphs.

Real Life Graphs

E.G.

The graph shows the cost of hiring a chainsaw from saws r us.
The company charge a fixed charge plus a daily charge.
Calculate the fixed and daily charge.
Answers:
Fixed charge $=$ Starting price for 0 days (the y intercept) this is $£ 10$.
Daily charge $=$ This can be calculated by working out the difference from one day to the next. Day $0=£ 10$, Day $2=£ 12.50$.
$12.50-10=2.502 .50 \div 2=£ 1.25$ Daily charge $=£ 1.25$

Number of Days

Literacy

Give the definitions of speed and velocity.

Reasoning

A, B and C are three points.
Point A has coordinates $(-5,4)$.
Point B has coordinates $(0,10)$.
Point B is the midpoint of A and C.
Sam says Point C has coordinates $(-2.5,7)$
Explain Sam's mistake and give the correct coordinates for Point C.

Fluency

Find the mid-point of each pair of coordinate.

1) $(2,3)$ and $(0,11)$
2) (5,10) and ($-1,12$)
3) 3$)(-1,5)$ and $(-2,-2)$

Calculate the distance between the two points.
Answers to $2 \mathrm{~d} . \mathrm{p}$. where appropriate.

Problem Solving

The graph shows the cost of hiring a rotivator from tools r us.

The company charge a fixed charge plus a daily charge.

Calculate the fixed and daily charge

Delta Unit 9: Inequalities

Prior Knowledge

Know what integer means (whole number)

Use inequality notation.
< means less than \leq means less than or equal to
> Means more than \geq means more than or equal to

Solve linear equations.
Substitute into expressions.
Factorise expressions

Solving Inequalities

Solve using the balancing method.
E.G. Solve $5 x-24>11$

$$
\begin{array}{cc}
5 x-24> & 11 \\
+24 \quad & +24 \\
5 x & >35 \\
\div 7 \quad \div 7 \\
x & >7
\end{array}
$$

Solving inequalities gives a range of answers, rather than an individual solution.

Representing Inequalities on a Number Line

We can represent inequalities on a number line, hollow means not included, filled in means included.


```
x<2,x is less than 2
x>2 x is greater then 2
x\leq2 x is less than or equal to 2
x\geq2 x is greater than or equal to 2
```

The integers (whole numbers) which satisfy this inequality are:

$$
4,5,6,7,8
$$

Solving Quadratic Inequalities

E.G.

Solve the inequality $x^{2}-5 x-14 \geq 0$

1) Use the quadratic formula to solve the quadratic.

$a=1$	$-\frac{b \pm \sqrt{b^{2}-4 a c}}{2 a}=\frac{+5 \pm \sqrt{(-5)^{2}-4(1)(-14)}}{2(1)}$
$c=-5$	
$c=-14$	$x_{1}=7$

2) Sketch the graph of the solutions and identify the correct part of the graph.

3) Use the graph to identify the solution.

$$
x \leq-7 \text { or } x \geq-2
$$

Literacy

Write the definition of Inequality

Use the word inequality within a sentence.

Fluency

List the integer solutions for the following:

1) $-2<x \leq 5$
2) $4 \geq x>-4$
3) $-3 \leq 2 x \leq 10$

Solve the following:

1) $2 x+7 \leq 15$
2) $4 x+13 \geq 6$
3) $5 x-2 \geq 2 x+13$
4) $2(x+7) \leq 5(2 x+3)$
5) $7-3 x<19$

Reasoning

Q. Solve $7-4 x>15$

Ama gives the following solution

$11-8 x>15$	(-7)
$8 x>4$	$(\div 8)$
$x>2$	

Comment on Ama's solution.

Problem Solving

1) Given that a and b are integers such that
$10<2 \mathrm{a}<22$
$-3<b<6$
and $\quad a+b=9$
Find all the possible values of a.
2) Bianca, Bob and Valentina have completed some Hegarty tasks. Bianca has completed 40 more than Bob. Valentina has completed 3 times as many as Bob.
Together Bob and Bianca have completed twice as many as Valentina.
Calculate the least number of tasks Bob could have completed.

Delta Unit 10: Graphs of Trigonometric Functions

Prior Knowledge

Know the trigonometric ratios.

Know the exact values of the ratios for $0^{\circ}, 30^{\circ}$ $45^{\circ}, 60^{\circ}, 90^{\circ}$.

Be able to plot graphs.

Substitute values into a formula.

Solve one-step and two-step equations.

Transformations of Graphs

The graphs can be either translated or reflected.

Translations

$\mathrm{F}(\mathrm{x}+\mathrm{a})$ moves the graph horizontally a to the left.
$\mathrm{F}(\mathrm{x})+\mathrm{a}$ moves the graph vertically a up.

Reflections

$-F(x)$ reflects the graph in the $x-$ axis.
$\mathrm{F}(-\mathrm{x})$ reflects the graph in the y axis.

Solving Trigonometric Equations

Trigonometric equations have infinite answers, and you can use the cyclic nature of the graph to find the other solutions.
E.G.

Solve $\cos (x)=0.75$ for $0 \leq x \leq 360$. Give your answers to 1 decimal place.

Using the cyclic nature of the graph we find the other value by $360-41.410=318.59$. The solutions are 41.4 and 318.6 .

$$
\cos (x)=0.75
$$

On a calculator:

$$
\begin{aligned}
x & =\cos ^{-1}(0.75) \\
& =41.41^{\circ}
\end{aligned}
$$

Trigonometric Graphs

The graphs have a cyclic nature in that they repeat over time.

Literacy

Write the definition of transformation.

Use the word transformation within a sentence.

Fluency

Sketch the following graphs for the values $0 \leq \theta \leq 360$

1) $y=\sin \theta$
2) $y=\cos \theta$
3) $y=\tan \theta$
$\begin{array}{lll}\text { 1) } y=\sin \theta & \text { 2) } y=\cos \theta & \text { 3) } y=\tan \theta\end{array}$

Find values for θ to make each of the statements correct

1) $\cos (40)=\cos (\theta)$
2) $\tan (135)=\tan (\theta)$
3) $\sin (215)=\sin (\theta)$

Describe the effect of the following transformations on $f(\theta)=\sin \theta$

1) $f(\theta)+1$
2) $-f\left(\theta-90^{\circ}\right)$
of the following $f\left(\theta+90^{\circ}\right)$

Reasoning

Arron looks at the graph below (Problem Solving) and says " $x=90$ is the only value where $\sin x^{0}=1$ " Is he correct? Give reasons for your answer.

Problem Solving

On the grid draw the graphs for: (label the graphs)
a) $y=2 \sin x^{\circ}$
b) $y=\sin x^{0}-1$
c) $y=\sin (x+90)^{\circ}$
d) $y=-\sin (x+180)^{\circ}+1$

Delta Unit 11: Perimeter and Area

Prior Knowledge

Perimeter is the distance around the outside of a 2 D shape.

Area is the amount of space inside a 2D shape.

Identify the names for parts of a circle.

Calculate the area of basic and compound shapes.

Convert between metric measures for area.

Know the following key formulae:

- Area triangle $=1 / 2 \times$ base x perpendicular height
- Area parallelogram = base x perpendicular height
- Area trapezium $=1 / 2(a+b) x$ height
- Area of a circle $=\pi r^{2}$
- Circumference of circle $=\pi d$

Area of Sector

The area of a sector is calculated by the formula $\frac{\theta}{360} \times \pi r^{2}$, where $\theta=$ the angle inside the sector.

EG

Find the area of the sector enclosed by two radii of 4 cm and 60°.
Area $=\frac{60}{360} \times \pi \times 4^{2}=8.4 \mathrm{~cm}^{2}$

Find the minor arc length, enclosed by radii of 3.5 cm and 144°.
Arc length $=\frac{144}{360} \times \pi \times 2 \times 3.5=8.8 \mathrm{~cm}$

Arc Length

The arc length is calculated by the formula $\frac{\theta}{360} \times \pi 2 \mathrm{r}$ or $\frac{\theta}{360} \times \pi d$, where $\theta=$ the angle inside the sector.
E.G.

Literacy

Write the definition of a Trapezium.

Use the word trapezium within a sentence.

Reasoning

Sameera says that you cannot draw a square that has a perimeter of $x \mathrm{~cm}$ and an area of $x \mathrm{~cm}^{2}$ (where x is the same value in each case). Is Sameera correct? Give a reason for your answer.

Fluency

Find the area of the following shades:

9 cm
2)
$(2 x+5) \mathrm{cm}$

Problem Solving

1) A circular pie is cut in to 8 slices of equal shape. The area of the top of one of these slices is $48 \mathrm{~cm}^{2}$. Find the diameter of the pie.
2) The area of this right-angled trapezium is 26 m . Find the perimeter of the trapezium.
 between the two radii of 145°.

Delta Unit 12: 3D Shapes

Prior Knowledge
Volume is the space inside a 3D shape.

Calculate the volume of a prism, including cylinders.

Draw plans and elevations for shapes.

Convert between metric measurements for volume.

Calculate surface area of 3D shapes.

Curved Surface Area of Cones

For the curved surface area of a cone the formula is $\pi \times r \times l$

Remember: for total surface area add the area of the base on. formula.

Spheres

If required to calculate the volume or surface area of a sphere then the following formulae will be given.

$$
\text { Volume of sphere }=\frac{4}{3} \times \pi \times r^{3} \quad \text { Surface area of sphere }=4 \times \pi \times r^{2}
$$

Volume of Pyramid

The formula volume of a pyramid will not be given to you. The volume is calculated from the

$$
\frac{1}{3} \times \text { area of base } \times \text { height } \quad \text { Remember: a cone is a circular based pyramid }
$$

A frustum is a truncated pyramid, to calculate the volume, take the volume of the smaller cone away from the volume of the larger cone.

Literacy

Write the definition of prism.

Use the word prism within a sentence.

Fluency

Find the volume and surface area of the following shapes:

1) A sphere with diameter of 9 m
2) A cone with radius of 3.8 cm and height 9 cm .

Problem Solving

The conical shaped container is partially filled with water, so that the water has depth of 9 cm . What is the volume of the water in the container?

Delta Unit 13: Constructions and Loci

Prior Knowledge

Using a compass. Using a protractor. Draw and use Loci. Draw plans and elevations of 3D shapes.
Construct a perpendicular bisector. Construct an angle bisector. Estimate lengths from scale diagrams.
Measure and use bearings. Know that the perpendicular from a point to a line is the shortest distance to the line.
Draw triangles accurately using a protractor and compass.

Using Loci to Find Regions on Scale Diagrams

Jane wants to plant a tree in the garden. It needs to be at least 5 m from C. Nearer to $A B$ than $A D$ and less than $3 m$ from DC.

On the diagram, shade the region where Jane should plant the tree.

Arc radius around C .
Bisector of $A b$ and $A D$ to find points nearer $A B$ than $A D$. Line as a loci from DC to show close enough to DC.
Region shaded red.

Bearings and Loci

Here is a map. S is the position of a ship. C is a point on the coast.
Ships must not sail within 500 m of C .
The ship is on a bearing of 037°.
Will the shop sail closer than 500 m of C ?

Circle around C to represent the area close enough to the ship.

Then the bearing is shown as well.

Yes, as the ships course does intersect the region.

Literacy

Write the definition of Loci

Use the word loci within a sentence

Fluency

Find the following bearings

1) The bearing of A from B is 138°. What is the bearing of B from A ?
2) The bearing of C from D is 284°. What is the bearing of D from C ?
3) The bearing of E from F is 082°. What is the bearing of F from E ?

Problem Solving

Ship A sails on a bearing of 060° at 25 km an hour. Ship B sails on a bearing of 285° at 40 km an hour. If both boats set off at the same time, how far apart are they after 4 hours?
Use a scale of $1 \mathrm{~cm}=30 \mathrm{~km}$

A

Delta Unit 14: Similarity and Congruency

Prior Knowledge

Understand ratios.

Know angle rules.

Construct a geometric argument with angles.

Understand properties of triangles.

Know that enlarging a shapes sides by scale factor 2, doesn't increase the area by scale factor 2.

Apply similarity to 2D shapes to find missing sides.

Area Scale factor

The area scale factor for 2 shapes is the square of the linear scale factor.
E.G.

Quadrilaterals P and Q are similar, the area of P is $10 \mathrm{~cm}^{2}$. Calculate the area of Q.

New area $=16 \times 10=160 \mathrm{~cm}^{2}$

Congruency

In order to prove 2 triangles are congruent they must share 3 pieces of information.

A proof must contain 3 bullet points, each stating the link and why they are the same.

Reasons can be given in the question r by shared side.

Volume scale factor

The volume scale factor for 2 shapes is the cube of the linear scale factor.
E.G.

Quadrilaterals R and S are similar, the volume of R is $40 \mathrm{~cm}^{3}$. Calculate the volume of S.

$$
L S F=\frac{35}{14}=2.5
$$

$$
V S F=2.5^{3}=15.265
$$

New volume $=40 \times 15.265=625 \mathrm{~cm}^{3}$

Literacy

Write the definition of Similar

Use the word similar within a sentence

Reasoning

A and B are similar cubes. The length of each edge on cube A is
$y \mathrm{~cm}$ and the length of each edge on cube B is $2 y \mathrm{~cm}$.
Ken says "Everything about Cube B is twice as big as Cube A"
Comment on Ken's statement.

Fluency

1) A and B are similar solids.

The surface area of shape B is $400 \mathrm{~cm}^{2}$. Find the surface area of A.

2) Prove that triangles $A B C$ and $C D E$ are similar.

Problem Solving

Chocopuffs are sold in small and large boxes.
The boxes are similar cuboids.
Volume of A : Volume of $B=8: 125$
The front of the larger box has an area of $500 \mathrm{~cm}^{2}$.
What is the area of the front of the smaller box?

Delta Unit 15: Further Trigonometry

Prior Knowledge

Know the

 trigonometric ratios.Know the exact values of the ratios for $0^{\circ}, 30^{\circ}$, $45^{\circ}, 60^{\circ}, 90^{\circ}$.

Substitute values into a formula.

Solve one-step and two-step equations.

Rearrange formulae.

Cosine Rule

Formula:

$$
\mathrm{a}^{2}=\mathrm{b}^{2}+\mathrm{c}^{2}-2 \mathrm{bc} \operatorname{Cos}(\mathrm{~A}) \text { or } \operatorname{Cos}(\mathrm{A})=\frac{\mathrm{b}^{2}+\mathrm{c}^{2}-\mathrm{a}^{2}}{2 \mathrm{~b}}
$$

Used when working with 3 sides and 1 angle.
E.G. Find the length of Z to 1 decimal place.

$$
\begin{gathered}
\mathrm{z}^{2}=\mathrm{x}^{2}+\mathrm{y}^{2}-2 \mathrm{xy} \operatorname{Cos}(\mathrm{Z}) \\
\mathrm{z}=\sqrt{9.4^{2}+6.5^{2}-2 \times 9.4 \times 6.5 \times \operatorname{Cos}(131)} \\
\mathrm{z}=14.5182785943 \\
\mathrm{z}=14.5 \mathrm{~cm}^{2}
\end{gathered}
$$

Sine Rule

Formula:

$\frac{a}{\operatorname{Sin}(A)}=\frac{b}{\operatorname{Sin}(B)}=\frac{c}{\operatorname{Sin}(C)}$ or $\frac{\operatorname{Sin}(A)}{a}=\frac{\operatorname{Sin}(B)}{b}=\frac{\operatorname{Sin}(C)}{c}$
Used when working with 2 sides and 2 angle.
E.G. Find the length of c to 1 decimal place

$$
\begin{gathered}
\frac{c}{\operatorname{Sin}(C)}=\frac{b}{\operatorname{Sin}(B)} \text { so } \frac{c}{\operatorname{Sin}(105)}=\frac{7}{\operatorname{Sin}(35)} \\
c=\frac{7 \times \sin (105)}{\sin (35)}=11.7882820066 \\
C=11.8
\end{gathered}
$$

Area of Non-Right Angled Triangle

Formula: Area $=\frac{1}{2} \mathrm{a} \times \mathrm{b} \times \operatorname{Sin}(\mathrm{C})$ (formula can be rearranged).
E.G.

Find the area of the following triangle to 1.d.p.
$\frac{1}{2} c \times a \times \operatorname{Sin}(B)$ (switched to suit triangle)
$\frac{1}{2} 150 \times 231 \times \operatorname{Sin}(123)=14529.96$
$14530 \mathrm{~m}^{2}$ (1.d.p.)

Literacy

Write the definition of Cosine

Use the word cosine within a sentence

Fluency

1) Calculate the area of the following triangles. Give your answers
to

b) Triangle XYZ has the following properties:

$$
X Z=7.8 \mathrm{~m} \quad Y Z=5.7 \mathrm{~m}
$$

Angle XZY $=114^{\circ}$

Reasoning

1) Find the value of x.

Sinead starts by writing
$\frac{\sin 42}{x}=\frac{\sin 34}{x}=\frac{\sin 104}{15}$
Comment on her work so far.
2) Find the length of the side $A B$.

Problem Solving

The area of this triangle is $20 \sqrt{3} \mathrm{~cm}^{2}$.

a) Find the value of a.
b) Find the value of b.

