AQ	A BIOLOG	Y B1: Cells & Organisation		Ye	ear 9 1	erm 1	SCHOOL
	leus rrols cell somes	Eukaryotic cells Animal cell Cytoplasm Nucleus	<u>Diffusion</u> Movement of particles from a high concentration to a low concentration (down a concentration gradient) To increase rate of diffusion:	Specialised Neurone	Cells - Cells that	t have differentiated Long and thin. Have a myelin sheath t loss of impulse. Form connections with neurones. Can carry electrical im one direction.	to prevent other
synthesis Cell Membrane Controls what goes in Cell membrane Controls what goes in			 Increase temperature Increase surface area Increase concentration gradient Shorten distance 	Sperm		Contain digestive enzy breaking down the out an egg cell. Many mitochondria. Have long tail.	
Mitochondria Respiration Chloroplast Vacuole Cell wall Found in plant cells		Found in plant cells	Large organisms have a small surface area:volume so require specialised exchange surfaces with large surface area so diffusion is fast enough. Small Intestine: Villi increase surface area Blood flow maintains conc. Gradient Thin wall 1 cell thick	Red Blood		Large surface area. Small diameter. No nucleus. Contain haemoglobin.	
Photosynthesis Prokaryotic cells - no membrane bound organelles (loose DNA) Cytoplasm Bacterial cell Yeast cell Where chemical reactions occur Cell wall Cell wall		(loose DNA) Bacterial cell Cell wall Cell wall		Root Hair		Found close to xylem Thin membrane. Large surface area.	
Cell membrane Molecule of circular DNA Cytoplasm			<u>Stem Cells</u> Undifferentiated cells taken from an embryo or adult bone marrow.	Cone Cells		Outer segment filled pigment fhat changes coloured light. Lots of mitochondria s constantly see in colou Specialised synapses of the optic nerve.	chemically in so that you ir.
Tis	sues and Or	gans	Enzymes - biological catalyst made from protein in ribosomes	Digestive E	inzymes		
<u>Tis</u>	Tissues : cells working together Glandular • Ribosomes - make enzymes and hormones • Vesicles to store enzymes and hormones		 Enzymes have an active site (shape) Active site fits a substrate and breaks it down 	Carbohydrase (e.g. amylase)	→ Simple sugars	Salivary glands, pancreas, Small intestine	рН7-8 37°С
Animal	Muscular Epithelial	 Long, thin cells contracts Lots of mitochondria for energy Goblet cells make mucus Cells have cilia 	$(E \supseteq \leftrightarrow E) \leftrightarrow E \bigcirc$		(glucose) Protein → Amino acids	Stomach Pancreas Small intestine	Stomach = pH1-2 37°C
	Mesophyll	Lots of chloroplastsPhotosynthesis	+ ↔ complex ↔ + reactant products	Lipase (e.g. pancreatic	Fats → Fatty acids	Stomach Pancreas	рН 7-8 37°С
Plant	Epidermal	• Thin and translucent to allow light through	Denature: Active site changes	lipase)	and glycerol	Small intestine	
4	Xylem	• Transports water	No longer recognises substrate	Commercial Use - speed up reactions, increase yields but need to monitor temperature and pH.			
	Phloem	• Transports sugars	 Temperature – too cold too slow optimum = 37°C 	Industry	try Function of Enzymes		
<u>Or</u>	<mark>gans</mark> : tissue	s working together	- too hot = denatures	Diet foods		fructose, which is sweeter s in 'slimming' foods (isomeras	
Sto		ndular: Makes enzymes and acid	 pH - enzymes only work at specific pH stomach enzymes need pH 1-2 (acid) 	Baby food	start off digestion	of food (proteases and lipase	25)
		ithelial: mucus protects lining ıscular: contracts, churns food	- intestinal enzymes need pH 7-8 (bile)	Biological detergent	break down stains (proteases and lipases).	

AQA BIOLOGY B1: Cells & Organisation

REQUIRED PRACTICAL: Food Tests

Type of Food	Name of Test	Positive Result	Negative Result
Starch	Iodine	Blue/Black	Brown
Glucose	Benedict's (must be heated)	Green → Yellow → Brick red	Blue
Protein	Biuret	Lilac	Blue
Lipids	Emulsion	Cloudy precipitate	Clear

Health and Risk Factors

• Communicable disease: Any disease transmitted from one person or animal to another, also called contagious disease.

 Non Communicable disease: Medical condition or disease that is noninfectious or non-transmissible.

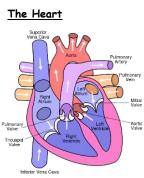
Risk Factors:

- · Cardiovascular disease: diet/obesity, age, genetics and exercise.
- Lung disease: smoking and cleanliness of the environment.
- Liver disease: alcohol, diet/obesity, genetics, drugs and viral infection
- Type 2 diabetes: genetics, diet/obesity and exercise

Cancer

When our cells divide, mutations can occur in the DNA which lead to abnormal cells.

Malignant cancer can spread to other parts of the body. We call this **metastasis**.


A cancer cell can detach from the tumour and be carried by the blood to other parts of the body. The cancer cell can become stuck in a capillary by an organ and then begin growing until it has invaded that organ membrane too.

<u>Blood Vessels</u>

Blood Vessel	Diagram	Type of Blood	Pressure	Special Features	
Artery	One losse Notes and Notes and	Oxy High Smaller lumen Image: Oxy Both Med 1 cell thick walls for far diffusion		Thick muscular elastic walls Smaller lumen	
Capillary	Non of the			1 cell thick walls for fast diffusion	
Vein	Cross-factor to car to a state of the stat	Deoxy	Low	Large lumen Valves to prevent back flow of blood	

Blood

- Red Blood Cells haemoglobin carries oxygen, biconcave disk increases surface area, no nucleus to fit in more haemoglobin.
- White blood cells fight pathogens
- Plasma transports dissolved substances
- Platelets bits of cytoplasm used to form blood clots

Double circulation

Right = lungs for gas exchange

Left = Rest of body

Needed because humans are more active and lungs are very delicate so blood can't be at a high pressure but must be to go round the rest of the body.

What could happen if our coronary arteries narrow?

Plague (fatty deposit) builds on the walls of the blood vessel.

The blood vessel can become blocked or in some cases the blood pressure increases causing some plaque to break away.

The plaque blocks narrower vessels causing blood clots and a lack of oxygen to tissue and organs.

- Lack of oxygen
- Lack of glucose

Turnour, rapidly

Cancer brea

through the membr

ancer cell detaches

and can spread to other parts of the bo

- For respiration
- No energy for contraction of cardiac muscle
- Heart stops (cardiac arrest)

Plants and Photosynthesis

	cubic (wax layer) How is the leaf adapted for
eaves	 Broad, flat to increase surface area Contain 4 types of tissue to carry out photosynthesis (see below) Guard cells close stomata at night to prevent water loss by transpiration Waxy epidermis to prevent water loss
Stem	 Hold leaves in position Waxy epidermis to prevent water loss Xylem - transports water Phloem - transports sugars
Roots	 Uptake of water and minerals Large surface area due to root hair cells Protein channels for active transport Meristems - plant stem cells

How is the leaf adapted for efficient photosynthesis?

- Sun hits palisade cells at top
- Palisade lots of chloroplasts
- Spongy mesophyll allows gas movement
- Xylem brings water
- Phloem maintains concentration gradient by removing glucose
- Guard cells open to allow carbon dioxide to diffuse into the leaf.

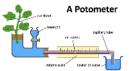
Year 9 | Term 1

Kettlethorpe

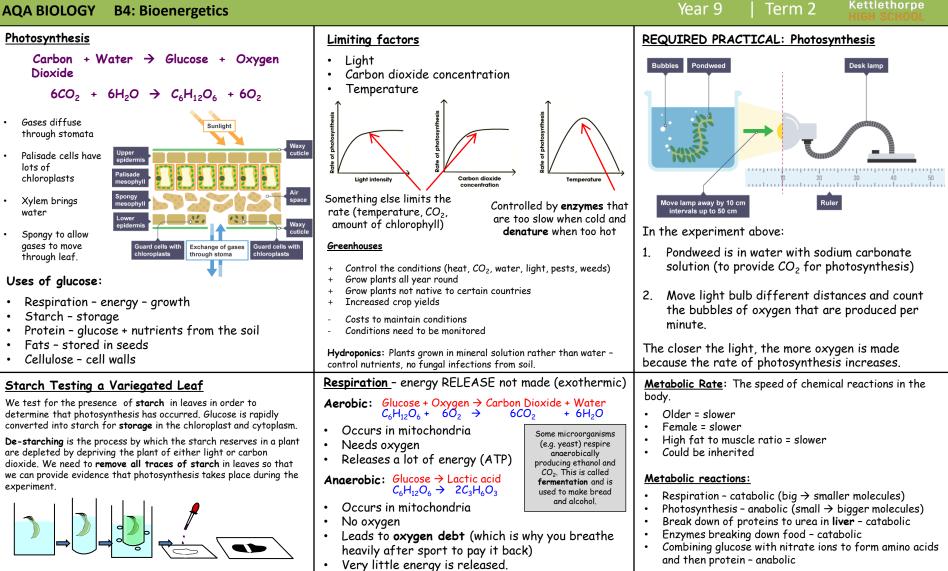
	Procedure How they work		Advantages	Disadvantages
	Drugs that lower blood cholesterol levels preventing plaque forming		Cheap Preventative	Can cause side effects
	Stents Stents Insert a balloon and wire mesh to artery. Inflate balloon and leave wire in place		Invasive Minor surgery	Anticoagulant drugs are needed which prevents blood clotting
	Bypass Surgery	Piece of vein is grafted from leg to bypass the blocked coronary artery	Permanent solution	Expensive Scars Major surgery
Mechanical Valve Replacement Synthetic valve used to replace faulty one. Biological Valve Replacement Animal valve used to replace faulty one		Last longer	Need anticoagulant drugs	
		No drugs needed	Only lasts 15 years	
	Pacemaker Device used to trigger the heart to beat in its normal rhythm		Keeps heart beating properly	Surgical procedure Can stop working near machinery and electronic devices
	Heart Transplant	Donor heart used to replace patient's heart	Permanent solution	Major surgery Rejection Immunosuppressant drugs needed

Transpiration and Translocation

Phloem

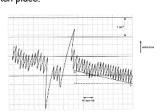

- Phloem vessels are made of long, thin-walled cells that form tubes. Sugars and amino acids dissolved in sap are transported in the
- Sugars and amino acids dissolved in sap are transported in the phloem by a process called translocation.
- The ends of the phloem tubes are called **sieve plates** and they have small holes in them to allow transport in both directions.
- Phloem cells have no nuclei. They have companion cells next to them to control them which are filled with mitochondria.

<u>Xylem</u>


- Xylem tubes are made from long cells with thick, reinforced walls made from lignin.
- The vessel has a large hollow lumen for water and minerals to flow through in one direction.
- The cell walls are waterproof which makes the cells die which results in wood in trees!

Transpiration Stream

- 1. Higher concentration of water in soil than in
- roots 2. Water moves into roots by osmosis
- 3. Higher concentration of water in roots than
- in leaves
- 4. Water moves up the xylem by osmosis to the leaves
- 5. Water lost through stomata and used for photosynthesis maintains concentration gradient.
- 6. This causes more water to be drawn in by the roots. This is called the transpiration stream



Boiling ethanol breaks down cellulose and removes chlorophyll. Iodine solution turns blue/black where starch is present i.e. where photosynthesis has taken place.

Measuring HR and BR

HR - heart rate monitor BR - spirometer

Tidal volume - normal volume breathed in and out.

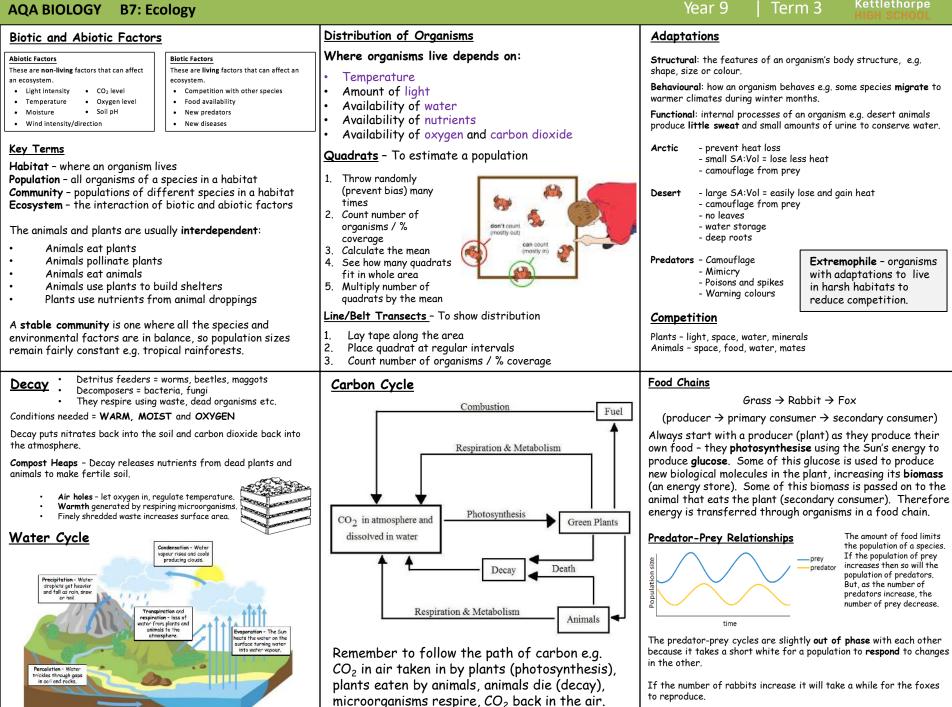
Exercise effect on HR and BR

Heart Rate increases - more oxygen to muscle

- more glucose to muscle

- more \overline{CO}_2 and water to lungs

Breathing Rate increases - more oxygen into blood - more CO_2 and water out


of the blood

Stored glycogen in muscle turned into glucose.

Anabolic reactions require energy from cellular respiration.

Carbohydrates	Energy	
Protein	Cell repair, growth and replacement	
Fat	Energy and insulation	
Fibre	Digestion	
Minerals	Calcium - Bones, Iron - Blood	
Vitamins	Immune system	

AQA BIOLOGY B7: Ecology

Kettlethorpe

AQA CHEMISTRY C1: Atomic structure and the periodic table

Elements, Mixtures and Compounds

Rule 1 - If two identical elements combine then the name doesn't change

Rule 2 - When two elements join the end is usually ______ide.

Rule 3 - When three or more elements combine and one of them is oxygen the ending is _____ate

An element is just a pure substance, for example oxygen (O_2)

A compound is a material that is made up of more than one type of atom chemically bonded together, for example Carbon Dioxide (CO_2)

A mixture contains two or more different types of compounds or elements that are not chemically bonded together

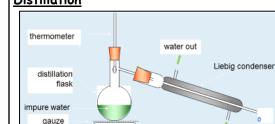
8 Name of Relative Relative The Atom 12 particle charge mass +1 Proton 1 Mass Number Neutron 0 1 -1 Very small Electron Atomic Number Atoms are very small, having a radius of about 0.1 nm (1 x 10^{-10} m). The Nucleus The radius of a nucleus is less than a dense core 1/10 000 of that of the atom (about of protons and 1 x 10⁻¹⁴ m). neutrons containing nearly all the The mass number tells us the number mass of the of protons + neutrons. atom The number of protons in an atom

is known as its atomic number, this is also the number of electrons

<u>'Shells' of electrons</u> electrons are really very very tiny so the atom is mostly empty space.

Atomic Structure

1. In 1901 JJ Thompson suggested the plum pudding model - this was an atom that the atom is a ball of positive charge with negative electrons embedded in it.


2. In 1909 Rutherford changed the accepted model using his alpha scattering experiment. The results from the alpha particle scattering experiment led to the conclusion

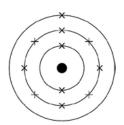
led to the conclusion that the mass of an atom was concentrated at the

centre (nucleus) and that the nucleus was charged. This nuclear model replaced the plum pudding model.

3. Niels Bohr adapted the nuclear model by suggesting that electrons orbit the nucleus at specific distances. 4. 20 years later, James Chadwick provided the evidence to show the existence of neutrons within the nucleus.

heat

Distillation can be used to separate liquids from a mixture, if they have different boiling points. Distillation is the process in which evaporation of a liquid is followed by condensation


Electronic Structure

The electrons in an atom occupy the lowest available energy levels (innermost available shells).

The electronic structure of an atom can be represented by numbers or by a diagram.

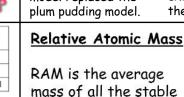
Up to two electrons can occupy the lowest energy level, up to eight in the second energy level and up to eight in the third energy level.

For example, the electronic structure of sodium is 2,8,1.

Distillation

tripod

Term 1 🛛 🖁


water in

Kettlethorpo HIGH SCHOO

beaker

pure wate

at ca ca th th ca

mass of all the stable isotopes of that element and includes the relative abundance.

Chlorine - 35 Chlorine - 37

35 17CI ³⁷₁₇CI

ElementRelative
mass of
isotopeRelative
abundanceChlorine353371

R.A.M. =
$$\frac{(35 \times 3) + (37 \times 1)}{3 + 1}$$
= 35.

AQA CHEMISTRY

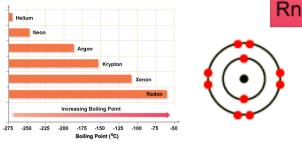
Development of the Periodic Table

Before the discovery of protons, neutrons and electrons, scientists attempted to classify the elements by arranging them in order of their atomic weights.

The early periodic tables were incomplete and some elements were placed in inappropriate groups if the strict order of atomic weights was followed.

Mendeleev overcame some of the problems by leaving gaps for elements that he thought had not been discovered and in some places changed the order based on atomic weights.

Elements with properties predicted by Mendeleev were discovered and filled the gaps. Knowledge of isotopes made it possible to explain why the order based on atomic weights was not always correct.


Group O

The elements in Group 0 of the periodic table are called the noble gases.

They are unreactive and do not easily form molecules because their atoms have stable arrangements of electrons.

The noble gases have eight electrons in their outer shell, except for helium, which has only two electrons.

The boiling points of the noble gases increase with increasing relative atomic mass (down the group).

Transition Metals (Triple Only)

The transition elements are metals with similar properties. Their properties are different from those found in Group 1. Lots of transition metals are used as catalysts.

Properties of transition metals;

- High melting + boiling point
- Form positive ions
- Good electrical conductors
- High thermal conductivity
- Malleable
- Form colored compounds

<u>Copper</u> Good conductor of heat and electricity	Iron Alloys are very strong	Manganese Resistant to corrosion
<u>Cobalt</u>	<u>Chromium</u>	<u>Nickel</u>
Strong when	Can speed up	Alloys are
alloyed with	reactions	resistant to
other metals	(Catalyst)	corrosion

Group 1

The elements in Group 1 of the periodic table are known as the alkali metals and have characteristic properties because of the single electron in their outer shell.

Li

.

How does electron structure affect reactivity?

The reactivity of alkali metals increases going down the group. What is the reason for this?

- The atoms of each element get larger going down the group.
- This means that the outer shell electron gets further away from the nucleus and is shielded by more electron shells.
- The further an electron is from the positive nucleus, the easier it can be lost in reactions.
- This is why the reactivity of the alkali metals increases going down group 1.

Metals and non-metals

Elements that react to form positive ions are metals. Elements that do not form positive ions are non-metals.

Term 1

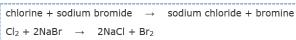
The formation of ions can be worked out using the Periodic Table:

- Group 1 elements form 1+ ions, group 2 elements form 2+ ions and group 3 elements form 3+ ions.
- Group 5 elements form 3- ions, group 6 elements • form 2- ions and group 7 elements form 1- ions.
- Group 0 do not form ions due to having a stable • structure/full outer shell.

The majority of elements are metals. Metals are found to the left and towards the bottom of the periodic table. Non-metals are found towards the right and top of the periodic table.

Group 7

The elements in Group 7 of the periodic table are known as the halogens and have similar reactions because they all have seven electrons in their outer shell.


The halogens are non-metals and consist of molecules made of pairs of atoms.

In Group 7, the further down the group an element is the higher its relative molecular mass, melting point and boiling point.

In Group 7, the reactivity of the elements decreases going down the group.

A more reactive halogen can displace a less
reactive halogen from an aqueous solution
of its salt.

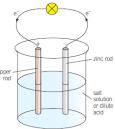
Displaced is just a chemist's word for pushed out.

C1: Atomic structure and the periodic table

Ar

Kr

Xe


AQA CHEMISTRY C4: Chemical changes		Year 9 Term 1 Kettlethorpe
Extraction of Metals + Metal Oxides Metals react with oxygen to form metal oxides Chromium + Oxygen → Chromium oxide Iron + Oxygen → Iron oxide Copper + Oxygen → Copper oxide	Oxidation and ReductionOxidation is the gain of oxygen and the loss of electrons, reduction is the loss of oxygen and gain of electrons.A chemical reaction	$\begin{array}{r c c c c c c c c c c c c c c c c c c c$
Many metals are found in the ground as metal compounds. The metal needs to be extracted. For metals that are below carbon in the	Oxidation Is Loss of electrons Reduction Reduction Beduction	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
reactivity series this can be done by heating the metal compound with carbon The carbon removes the oxygen from the metal oxide. Pb Lead H Hydrogen Cu Copper Au Gold Pt Platinum C H added for comparison Reactivity Series of Metals	balanced symbol equation, ionic and half equations which show the movement of electrons. Zinc + copper sulphate \rightarrow zinc sulphate + copper Zn + CuSO ₄ \rightarrow ZnSO ₄ + Cu	Acid+AlkaliMetal salt+WaterHydrochloric acid + Sodium hydroxide \rightarrow 2HClSodium chloride + Water NaCl ₂ + H ₂ OSodium chloride + Water NaCl ₂ + H ₂ OSulphuric acid + Potassium hydroxide \rightarrow H ₂ SO ₄ + 2KOHPotassium Sulphate + Water K ₂ SO ₄ + 2H ₂ O
 Copper oxide + Carbon → Carbon dioxide + Copper Lead oxide + Carbon → Carbon dioxide + Lead Iron oxide + Carbon → Carbon dioxide + Iron 	$Zn - \text{oxidised} Cu^{2+} - \text{reduced}$ $Zn + Cu^{2+} \rightarrow Zn^{2+} + Cu$ $Zn - 2e^{-} \rightarrow Zn^{2+} \text{ or } Zn \rightarrow Zn^{2+} + 2e^{-}$ $Cu^{2+} + 2e^{-} \rightarrow Cu$	
Neutralisation The acid used will determine the salt produced in a neutralisation reaction: • hydrochloric acid produces chlorides	Soluble salts (Required practical) Soluble salts can be made from acids by reacting them with solid insoluble substances, such as metals, metal oxides, hydroxides or carbonates.	Soluble salts (Required practical): Method
 nitric acid produces nitrates sulfuric acid produces sulfates limit acid pr	The solid is added to the acid until no more reacts and the excess solid is filtered off to produce a solution of the salt. Salt solutions can be crystallised to produce solid salts.	Sulfuric acid is warmed in a water bath Weigh 2g of black copper oxide powder Weigh 2g of black copper oxide powder Add copper oxide to the sulphuric acid until a blue solution is formed and excess copper Filter the unreacted copper oxide from the solution and collect the filtrate
$ \underbrace{ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$		oxide sinks to the bottom of the tube. 5 Evaporating Data ast solution 6 Transfer the solution to an evaporating dish and heat gently Leave to cool, copper sulfate crystals will form. Remove and dry crystals.

AQA CHEMISTRY C4: Chemical changes		Year 9 Term 1 Kettlethorpe		
pH and Acids + Alkalis 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14	Strong and weak acids A strong acid is completely ionised in aqueous solution. HCI + $H_2O \longrightarrow H^+ + CI^-$	<u>Electrolysis</u> When an ionic compound is melted or dissolved in water, the <mark>ions</mark> are free to move about within the		
Acids produce H^{+} (as $H_{3}O^{+}$) ions in water and they taste sour. They also corrode metals and have a pH of less than 7. They also turns blue litmus paper to red. Alkalis produce OH ⁻ ions in water and they taste bitter with a pH greater than 7. Alkalis turns red litmus paper to blue.	Examples of strong acids are hydrochloric, nitric and sulfuric acids. A weak acid is only partially ionised in aqueous solution. $CH_3COOH + H_2O \longrightarrow CH_3COO^- + H^+$ Examples of weak acids are ethanoic, $H_3COO^- + H^+$	liquid or solution. These liquids and solutions are able to conduct electricity and are called electrolytes. Passing an electric current through electrolytes causes the ions to move to the electrodes. Positively charged ions move to the negative electrode (the cathode), and negatively charged ions move to the positive electrode (the anode).		
A solution is defined as an acid if the concentration of H ⁺ ions is greater than the concentration of OH ⁻ ions. [H ⁺] > [OH ⁻] A solution is defined as alkali/base if the concentration of hydrogen ions is less than the concentration of hydroxide ions. [H ⁺] < [OH ⁻]	citric and carbonic acids. For a given concentration of aqueous solutions, the stronger an acid, the lower the pH. As the pH decreases by one unit, the hydrogen ion concentration of the solution increases by a factor of 10.	Cathode (-ve) Anode (+ve) • Negative non-metal ion • Positive metal ion		
Electrolysis of molten ionic compounds	Electrolysis Extended	At the cathode		
When a simple ionic compound (eg lead bromide) is electrolysed in the molten state using inert electrodes, the metal (lead) is produced at the cathode and the non-metal (bromine) is produced at the anode. Cathode (-ve) Anode (+ve)	At the negative electrode, hydrogen is produced if the metal is more reactive than hydrogen. At the positive electrode oxygen is produced unless the solution contains halide ions when the halogen is produced.	 Whether hydrogen or a metal is produced at the cathode depends on the position of the metal in the metal reactivity series: the metal is produced at the cathode if it is less reactive than hydrogen hydrogen is produced at the cathode if the metal is more reactive than hydrogen 		
	This is due to water molecules breaking down in aqueous solution to form hydrogen and hydroxide	At the anode Rules for determining products		
Cathode (-ve electrode)	ions. At the cathode positively charged ions gain electrons, whereas as the negatively charged ions lose electrons at the anode. These are both examples of ovidation and neduction. These can be approximated	Oxygen is produced (from hydroxide ions), unless halide ions (chloride, bromide or iodide ions) are present. In that case, the negatively charged halide ions lose electrons and form the corresponding halogen (chlorine, bromine or iodine). The table summarises the product formed at the anode during the electrolysis of different electrolytes in solution.		
$Pb^{2+} + 2e^{-} \rightarrow Pb$	$2H_{+} + 2e_{-} \rightarrow H_2$	Negative ion Element given off at anode Chloride, Cl ⁻ Chlorine, Cl ₂		
Anode (+ve electrode)		Bromide, Br ⁻ Bromine, Br ₂		
$2Br^{-} - 2e^{-} \rightarrow Br_{2}$	$4OH - \rightarrow O_2 + 2H_2O + 4e -$ $4OH 4e - \rightarrow O_2 + 2H_2O$	Iodide, I [*] Iodine, I ₂ Sulfate, SQ4 ²⁻ Oxygen, O ₂		
$OR 2Br^{-} \rightarrow Br_{2} + 2e^{-}$	$40H4e-\rightarrow O_2+2H_2O$	Nitrate, NO ₃ ⁻ Oxygen, O ₂		

AQA CHEMISTRY C5: Energy changes				ergy changes		Year 9 Term 3 Kettlethorpe
Exothermic and endothermic reactions				ons	Investigating temperature changes	Reaction profiles and Activation energy
Exothermic reactions release thermal energy (heat)					Record the initial temperatures of any solutions, and	1
into their surroundings. They can occur spontaneously					the maximum and minimum temperatures reached in	
		-	-	ical reactions are	the course of the reaction.	/3.ux
		Temperature i			the thermometer is used to	E energy is released E energy is taken in
		me examples?			measure the temperature change which takes place The insulation provided by the poly(styrene) cup reduces the rate	products reactants
	nbustic	-			during the reaction.	progress of reaction progress of reaction
• res	piration	า			or non the reaction mixture.	Figure 1 The reaction profile for an exothermic reaction Figure 2 The reaction profile for an endothermic reaction
	•	tion of acids wit	h alkalis		poly(styrene) cup	activation energy
•rea	actions of	of metals with a	icids		poly(ayland) ap	(the energy needed to start a reaction)
		Cl (aq) \rightarrow MgCl ₂		, (g)		
		ite Process.		L := *		reactants activation energy
●En	dotherr	nic reactions ab	sorb the	rmal energy, and so		reactants activation energy products
		<mark>rease</mark> in temper			Using energy transfers from reactions	reactants
	-	me examples?			Exothermic changes can be used in hand warmers	products
				m carbonate in a	and self heating cans. Crystallisation of the	
	furnac		-		supersaturated solution is used in reusable	progress of reaction progress of reaction
•ph	otosynt	hesis			warmers. However, disposable, one-off hand	Figure 3 This reaction profile Figure 4 This reaction profile
		es of electrolysis	;		warmers heat up the surrounding for longer.	shows the activation energy for an shows the activation energy for an exothermic reaction endothermic reaction
	erbet				 Endothermic changes can be used in instant cold 	Bond breaking is endothermic whereas bond making is
•NH	l₄NO₃ (s) + H₂O (I)→NH₂	4 ⁺ (aq) + N	NO ₃ - (aq)	packs for sports injuries.	exothermic.
Bon	a ener	gy calculation	<u>15</u>		The formation of ammonia. The energy released, 93KJ,	$\underline{\textbf{Cells and batteries}} Zn(s) + CuSO_4(aq) \rightarrow ZnSO_4(aq) + Cu(s)$
The	energy	needed to brea	ik a bond	between 2 atoms	is from the formation of 2 moles of ammonia (see	The sulfate ions do not change in the displacement reaction above.
				bond. They are	balanced equation below). So if you wanted to know	They are spectator ions.
		measured	in KJ/mc	ol.	the energy change for the reaction per mole of	So you can leave them out of the equation and write an ionic equation:
	Table 1 Co	ommon bond energies			ammonia formed, it would release exactly half this, i.e.	$Zn(s) + Cu^{2+}(aq) \rightarrow Zn^{2+}(aq) + Cu(s)$
			Road	Rond operation in the type of	46.5kJ/mol. $N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$	You can think of this redox reaction as two half equations.
	Bond C-C	Bond energy in kJ/mol 347	Bond H—Cl	432	$14_2(g) + 511_2(g) \leftarrow 21411_3(g)$	One will represent reduction:
	с—о	358	н—о	452	 In chemical reactions, energy must 	$Cu^{2+}(aq) + 2e^{-} \rightarrow Cu(s)$
	С—Н	413	H—N	391	be supplied to break the bonds between atoms in the reactants.	The Cu^{2+} ions are reduced to Cu.
	C—N	286	н—н	436	When new bonds are formed	The other will be an oxidation reaction:
	C—Cl	346	0—0	498	between atoms in a chemical	$Zn(s) \rightarrow Zn^{2+}(aq) + 2e^{-}$
	Cl—Cl	243	N₩N	945	reaction, energy is released. 2253 kJ	The Zn atoms are oxidised to Zn^{2+} ions.
*		In an exothermic reaction, the Genergy absorbed denergy d				
	bond breaking bond making		bond making	formed is greater than the energy	An electrical cell made from	
		H(g) + H(g)	H(g) +	+ H(g)	absorbed when bonds are broken. N2 + 3H2	zinc and copper \rightarrow The
energy		436 kJ/mol of	energy	436 kJ/mol of	In an endothermic reaction, the In an endothermic reaction, the In an endothermic reaction, the	electrons flow from the more
eD		436 KJ/mol of energy absorbed	G	energy released	energy released when new bonds are formed is less than the energy	reactive metal (zinc) to the less
	H—H(g)			H—H(g)	absorbed when bonds are broken. progress of reaction	reactive metal (copper). So zinc acts as the negative terminal of
,				,	You can calculate the overall energy	the coll providing electrons to
Breaking and making a particular bond always involves				nd always involves	change in a chemical reaction using	the external circuit.

the same amount of energy

bond energies. 1

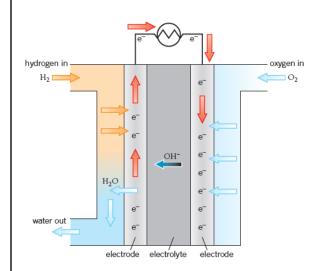
AQA CHEMISTRY

erm 3 Kettlethorpe HIGH SCHOOL

Fuel Cells

Scientists are developing hydrogen as a fuel.

Hydrogen + Oxygen \rightarrow Water 2H₂ + O₂ \rightarrow 2H₂O


- The world relies on fossil fuels. However, they are non-renewable and they cause pollution.
- Hydrogen is one alternative fuel. It can be burned in combustion engines or used in fuel cells to power vehicles.
- Hydrogen gas is oxidised and provides a source of electrons in the hydrogen fuel cell, in which the only waste product is water.

Hydrogen gas is supplied as a fuel to the negative electrode. It diffuses through the graphite electrode and reacts with hydroxide ions to form water and provides a source of electrons to an external circuit.

$$2H_2(g) + 4OH^-(aq) \rightarrow 4H_2O(l) + 4e^-$$

Oxygen is supplied to the positive electrode. It diffuses through the graphite and reacts to form hydroxide ions, accepting electrons from the external circuit.

 $O_2(g) + 2H_2O(l) + 4e^- \rightarrow 4OH^-(aq)$

A hydrogen fuel cell which has an alkaline electrolyte, such as potassium hydroxide. Only waste product is water.

Advantages of hydrogen fuel cells -

Do not need to be electrically recharged
 No pollutants are produced
 Can be a range of sizes for different uses

Disadvantages of hydrogen fuel cells-

 Hydrogen is highly flammable
 Hydrogen is sometimes produced for the cell by non-renewable sources
 Hydrogen is difficult to store

Investigating chemical cells

cell.

Cells and batteries continued...

forms a simple electrical cell.

Metals lose electrons and form positive ions. When 2 metals are dipped in a salt solution and

joined by a wire, the more reactive metal will

donate electrons to the less reactive metal. This

The greater the difference in reactivity between the

2 metals, the higher the voltage produced by the

This apparatus is used to investigate the voltage produced by different metals paired with magnesium ribbon. You can compare magnesium against zinc, iron, copper & tin in your electrical cells.

AQA PHYSICS P1: Energy	Year 9 Term 1 HIGH SCHOOL	
Energy CANNOT be created or destroyed	Gravitational Energy $E_p = M \times G \times h$	<u>Springs</u>
<u>Energy types</u>	(J) (Kg) (N/Kg) (m) The higher an object or the more mass it has	When you add a force (weight) to a spring it
* Gravitational Potential - Increased with height	the more gravitational energy it has.	extends.
* Kinetic Energy - Increased with speed * Elastic Energy - Increased when stretched or squashed	<u>Kinetic Energy</u> E _k = ½ × mass × Velocity² (J) (Kg) (m/s)	Extension = Stretched length - original length
* Thermal Energy - Gained when heated, often lost (wasted) to the surroundings	The faster and heavier an object the more kinetic energy it has.	The energy stored in a spring can be calculate:
<u>Energy Transfers</u>	$\frac{Calculating Velocity}{E_p = M \times G \times H}$ 2Kg	E _e = ½ x spring constant x extension ² (J) (N/m) (m)
* Mechanically – When a force is applied * Heating – When an object is heated * Electrically – When an object is powered by electricity	$F = 2 \times 10 \times 3 = 60J$ $E_p = E_k \Rightarrow E_k = 60J$ 3m	Power is a measure of how quickly energy is used. The shorter the time the more powerful it is.
A ball rolling down a hill: <u>Gravitational Potential</u> <u>Energy</u> is turned <u>mechanically</u> into <u>kinetic</u> <u>energy</u>	$V = \sqrt{\frac{Ek}{\frac{1}{2}xm}} = \sqrt{\frac{60}{\frac{1}{2}x2}} = 7.7 \text{m/s}$	Power = <u>Energy (J)</u> (W) Time (s)
Specific heat capacity (SHC)	Renewable Sources of electricity ALL turn a turbine to turn a generator.	
The amount of energy needed to heat a 1Kg material by 1°C.	* Wind (Wind turns a turbine) * Hydroelectric (water turns a turbine)	Electrical energy Light energy 75 J
Heat Energy = Mass x SHC x Change in Temp (J) (Kg) (J/Kg°C) (°C)	* Waves/Tide (The sea turns a turbine) * Geothermal (Heat from volcanoes used to boil	
$C = \frac{E}{mx\Delta\theta} \qquad m = \frac{E}{c x \Delta\theta} \qquad \Delta\Theta = \frac{E}{mxc}$	water - make steam - turn a turbine) * Biomass (Living material burnt to boil water)	
This experiment only gives an estimate for the values calculated as <u>energy is lost to the surroundings.</u>	<u>Advantages of ALL</u> * <u>Don't give out CO₂ which causes global warming</u> * Renewable (will NOT run out) <u>Disadvantages</u>	Heat energy 25.3
<u>Heat Transfer</u>	They are <u>all</u> more expensive than fossil fuels * Wind - Not always windy	Efficiency = $\frac{Useful Energy Out}{Total Energy In} \times 100$
1.The higher the thermal conductivity of a material the higher the rate of heat transfer by conduction	* Hydroelectric - Can damage habitats * Waves/Tides - Can damage habitats * Geothermal - Only a few places on Earth	Efficiency = $\frac{Useful Power Out}{Total Power In} \times 100$
by conduction.	* Biomass - Carbon neutral (gives out CO ₂ when burnt)	Answers for efficiency must be written as a percentage or a decimal E a 80% or 0.8

AQA PHYSICS P3: Particle model of matter Year 9 Term 2 Kettlethorpe									
Density:				<u>Internal Energy</u>				<u>Changing State</u>	
Density = <u>Mass</u> (kg) (kg/m³) Volume (m³)				The energy in a substance is stored in its particles, this is called internal energy.				When a material changes state (melting or boiling) its internal energy increases, but its temperature does not. This means that its	
Calculating the density of an irregular shape, can be done using a Eureka can and					Internal energy = kinetic energy + potential energy.			kinetic energy remains constant until it has changed state.	
measuring the volume of water displaced.					Temperature: This is linked to the kinetic			Temperature Changing State	
State of matter	Diagram of structure	Movement of particles	Can it be comp	ressed?	Density	temperature the <u>higher</u> its kinetic energy.		oiling point	
Solid		Vibrate around a fixed position. They don't have enough energy to move apart	No, the particles space between the into.		High, there are lots of particles in a unit of area.				
Liquid		They have enough energy to move from place to place but are still attracted to each other	No, the particles space between the into.		Quite high, there are lots of particles in a unit of area.	does the kinetic	Me	letting point Liquid/gas mixture Gas	
Gas		The have so much energy that they are not attracted to each other. Collisions with containers cause pressure.	Yes, the particles of space betweer move into	n them to	Low, there are few particles in a unit of area.	energy of the particles.		Solid/ liquid mixture Solid	
Specific Latent Heat				Pressure and volume				Temperature and pressure	
The specific latent heat of a substance is the energy needed to change 1kg of the substance with no change in state.					Pressure x Volume = constant (Pa) (m ³) so $P_1 \times V_1 = P_2 \times V_1$			Increasing the temperature of a gas increases the kinetic energy of the gas particles, this increases the number of collisions with the surface, this increases the pressure acting on the sides of the container.	
Energy = Mass x Specific Latent Heat (J) (kg) (J/kg)				Increasing the volume of a gas (making the				Temperature and gas	
E=m×L					container bigger) whilst keeping the temperature constant will <u>decrease</u> the pressure of the gas.				
Specific heat of fusion: when turning from a solid into a liquid					- h			Cool gas, fewer and less Hot gas, more and more	

a iiquia solia in Specific heat of vapourisation: when turning from a liquid into gas

Low pressure

High pressure

create a net force which acts at right angles to the

energetic collisions

speeds.

energetic collision

Particles move in <u>different directions</u> with a <u>range of</u>

As the particles hit the side of the container they