Kettlethorpe

MATHS

Year 11 | Delta

Name:

Set:

Unit	Topic	Complete
1	Collecting data	
2	Presenting data	
3	Circle theorems	
4	Circle geometry	
5	Changing the subject	
6	Vectors	

Essential knowledge:

- Use sampling to estimate population sizes (capture-recapture method)
- Identify Bias

Key Words:

Sample, population, fraction, decimal, percentage, bias, stratified sample, random, box plot, histogram, frequency density, frequency, mean, median, mode, range, lower quartile, upper quartile, interquartile range, spread, comparison, outlier

Prior Knowledge:

- Equivalent fractions e.g. $\frac{5}{20}=\frac{30}{x}$
$x=\frac{30}{5} \times 20=120$
- Know the difference between discrete and continuous data
- Know what bias is
- Know how to reduce bias in sampling and questionnaires
- Know that a larger sample produces more reliable results

Sampling (capture-recapture)

The capture-recapture method is used to estimate a population size from a sample size, by assuming that the sample size is in the same proportion as to the population size

Example

A man catches 20 fish in a lake, he marks them with a cross, he puts the fish back in the lake. The next day the man catches 30 fish and 5 of them have a cross on them. Estimate how many fish are in the lake.

Currently $\frac{5}{30}$ are marked, we know 20 are marked altogether.
So $\frac{5}{30}=\frac{20}{x}$ As they are in the same proportion, $x=$ the population size. To calculate $30 \times(20 \div 5)=120$.

Example

Gary wants to have a party for his 300 friends, he asks 30 of them what their favourite crisps are and they give the following results

Salt \& Vinegar	Ready Salted	Cheese \& Onion	Prawn Cocktail
10	7	8	5

How many of each flavour should Gary order?
Gary sampled 30 out of 300 , so the multiplier is $300 \div 30=10$. So for each flavour we multiply by 10

Salt \& Vinegar	Ready Salted	Cheese \& Onion	Prawn Cocktail
$10 \times 10=100$	$7 \times 10=70$	$8 \times 10=80$	$5 \times 10=50$

Caution

We have made assumptions for the above questions
We have assumed that the sample is representative of the population.

LITERACY

REASONING

Stephen traps 30 deer in the forest, tags them and releases them. A week later he traps 50 and 15 are tagged. He uses capture/recapture to estimate the total number of deer as 100. Write down 3 assumptions he must make.

FLUENCY

1) There are 477 people at a concert.

	Male	Female
Adult	57	83
Child	114	223

Eric wants to pick a sample of 80 stratified by gender and age.
i) Work out the number of adult males in the sample.
ii) Work out the number of female children in the sample.
2) Taymar wants to estimate the number of fish in a lake.

She catches 60 fish from the lake and marks them with a dye. She then releases the fish back in to the lake.
The next day, Taymar catches 70 fish from the lake, 8 of the fish have been marked with the dye.
Work out an estimate for the number of fish in the lake.

PBOBLEM SOLVTNG

There are 2480 people in a town.

	Men	Women	Children	Total
Number in town	1260			2480
Number in sample	63	22		

The stratified sample is selected with Men, Women and Children being the 3 strata.
Complete the table.

Essential knowledge:

- Plot and interpret a cumulative frequency diagram
- Plot and interpret a Histogram

Key Words:

box plot, histogram, frequency density, frequency, mean, median, mode, range, lower quartile, upper quartile, interquartile range, spread, comparison, outlier, estimate

Prior Knowledge:

- Compare two distributions using an average and a measure of spread.
- Understand what the median is
- Understand what upper and lower quartiles are
- Calculate interquartile range
- Understand that with grouped data we are estimating the distributions within the groups
- Calculate mean from grouped data
- Identify outliers

Constructing a Cumulative Frequency Diagram

Cumulative frequency creates a running total of the amounts within a table, it is used for continuous grouped data. A cumulative frequency diagram is created by plotting the upper class boundary with the cumulative frequency.

Length (cm)	Frequency	
$30<l \leq 35$	4	Cumulative frequency
$35<l \leq 40$	10	4
$40<l \leq 45$	11	$25(4+10=14)$
$45<l \leq 50$	12	$37(25+11=25)$
$50<l \leq 55$	3	$40(37+3=40)$

Remember you need to plot 0 at the lower class boundary for the first group. In addition, the graph should be plotted with straight lines.

Reading from Cumulative Frequency Diagram

We can estimate the median and quartiles from a cumulative frequency diagram,
Median - Draw a line across from the middle value e.g. the above data has 40 people so the median will be the $20^{\text {th }}$ value, if we read across from there we have a median of 43

Upper/Lower Quartile - Draw a line across for the marker for top and bottom 25\%. E.g., the lower quartile is the tenth person giving us 38, upper quartile would be the $30^{\text {th }}$ person, giving us 47

Interquartile range - this is the upper quartile take the lower quartile e.g. $47-38=9$
Remember: Values taken from cumulative frequencies are estimates, as we do not know the distribution of the data within the groups.

LITEBACY
Write the definition of Outlier

Use the word outlier within a sentence

FLUENCY

Here is some information about students marks on a test.
a) Draw a cumulative frequency diagram for this information.
b) Estimate the median mark achieved by a pupil.
c) Calculate the IQR.

REASONTNG

Compare the two classes results.
(a)

7 A results

7B results

PROBLEM SOLVING

What percentage of people scored more than 80% of the marks?

Delta Unit 3: Circle Theorems

Essential knowledge:

- Know and apply the circle theorems

Key Words:

Radius, centre, tangent, circumference, diameter, gradient, perpendicular, reciprocal, coordinate, equation, substitution, chord, triangle, isosceles, angles, degrees, cyclic quadrilateral, alternate,

Prior Knowledge:

- Now the basic angle laws e.g. Angles on a straight line
- Construct your reasoning for a missing angle problem
- Identify the names for parts of a circle
- Construct a proof

Circle Theorems

$$
\begin{equation*}
180-68 \tag{AI}
\end{equation*}
$$

112
(ii) Give a reason for your answer.

OPPOSITE ANGLES IN A CYCLIC QUADRILATERAL $A D D$ to 180°
(2)
(b) (i) Find the size of angle $A O C$.

$$
2 \times 68
$$

136
(ii) Give a reason for your answer.

ANGLE AT THE CENTRE IS TWICE ANGLE AT THE CIRCUMFERENCE
(2)
(c) Find the size of angle CAE.

冏
BANGLE BETWEEN A TANGENT AND
68°
(HOLD IS EQUAL TO THE ANGLE IN
The alternate segment)

Diagram NOT accurately drawn
(c) (i) Work out the size of angle $A B C$.

$$
\begin{equation*}
180-78 \tag{Al}
\end{equation*}
$$

102
(ii) Give a reason for your answer.

OPPOSITE ANGLES IN A CYCLIC
QUADRILATERAL ADD UP TO 180°

LITEBACY
Explain the following words:
Estimated mean-

Modal class interval-

A football team played six games.

Here are the number of goals they scored in each game:

The football team play one more game
The mean number of goals scored increases to 4
(c) Work out the number of goals scored in the seventh game

FLUENCY

4. Timothy asked 30 people how long it takes them to get to school

圆 The table shows some information about his results.

Time (t minutes)	Frequency
$0<\mathrm{t} \leq 10$	2
$10<\mathrm{t} \leq 20$	8
$20<\mathrm{t} \leq 30$	12
$30<\mathrm{t} \leq 40$	7
$40<\mathrm{t} \leq 50$	1

Work out an estimate for the mean time taken.

PBOBLEM SOLVING

Shown below are five cards which are arranged in order from smallest to largest

The range of the cards is 4
The median of the cards is 8 . The mean of the cards is 7 .

Work out the 4 missing numbers

Delta Unit 4: Circle Geometry

Essential knowledge:

- Find the equation of a tangent to a circle at a given point

Key Words:

Radius, centre, tangent, circumference, diameter, gradient perpendicular, reciprocal, coordinate, equation,

Equation of a tangent

Example:

Here is a circle, centre O , and the tangent to the circle at the point $(2,-4)$.

Find the equation of the tangent at the point P

First: Find the gradient of the radius between O and $\mathrm{P}: \quad \frac{-4-0}{2-0}=-\frac{4}{2}=-2$
Second: Find the gradient of the line perpendicular to this: $\frac{1}{2}$
Third: Find the equation of the tangent using the new gradient and the point P

$$
y=m x+c-4=-2\left(\frac{1}{2}\right)+c \quad-4=-1+c-3=c
$$

$$
y=\frac{1}{2} x-3 \text { another form would be } 2 y=x-6
$$

Hint: Be careful you may be asked to leave your answer in a certain form e.g. $a y+b x=c$

Prior Knowledge:

- To be able to draw a circle using a compass
- To know the general from for the equation of a circle

$$
x^{2}+y^{2}=r^{2}
$$

- Plot the graph of a circle
- Find the gradient of a line given two points
- Find the gradient of a perpendicular line using the negative reciprocal
- Find the equation of a line given a point and gradient

LITEBACY
Explain the following words:
Estimated mean-

Modal class interval-

A football team played six games.

Here are the number of goals they scored in each game:

The football team play one more game
The mean number of goals scored increases to 4
(c) Work out the number of goals scored in the seventh game

FLUENCY

4. Timothy asked 30 people how long it takes them to get to school

圆 The table shows some information about his results.

Time (t minutes)	Frequency
$0<\mathrm{t} \leq 10$	2
$10<\mathrm{t} \leq 20$	8
$20<\mathrm{t} \leq 30$	12
$30<\mathrm{t} \leq 40$	7
$40<\mathrm{t} \leq 50$	1

Work out an estimate for the mean time taken.

PBOBLEM SOLVING

Shown below are five cards which are arranged in order from smallest to largest

The range of the cards is 4
The median of the cards is 8 . The mean of the cards is 7 .

Work out the 4 missing numbers

Delta Unit 5: Changing the subject

Essential knowledge:

- Rationalise the denominator with surds
- Manipulate algebraic fractions
- Find inverse functions and combined functions
- Use algebraic proof

Key Words:

Rationalise, denominator, surd, rational, irrational, fraction, equation, rearrange, subject, proof, function notation, inverse, evaluate, numerator, denominator, input, output

Prior Knowledge:

- Expand and factorise single and double brackets
- Add and subtract fractions
- Multiply and divide fractions
- Find equivalent fractions
- Simplify expressions involving surds
- Substitute into expressions and formulae
- Know about the difference of 2 squares
- Basic function notation
- Substitute an expression into another expression

Rationalise the denominato

Rationalise the denominator is to remove the surd element from the denominator, it is done by multiplying by the surd.

$$
\text { e.g. (i) } \begin{aligned}
\frac{4}{\sqrt{2}} & =\frac{4}{\sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}} \\
& =\frac{4 \sqrt{2}}{2} \\
& =2 \sqrt{2}
\end{aligned}
$$

For some you use difference of 2 squares
E.g. $\frac{6}{3+\sqrt{7}}=\frac{6}{3+\sqrt{7}} \times \frac{3-\sqrt{7}}{3-\sqrt{7}}$
$=\frac{18-6 \sqrt{7}}{9-7}=\frac{18-6 \sqrt{7}}{2}=9-3 \sqrt{7}$

Function Notation

Inverse Functions are the reverse function to find the function that would find the input. Example: $\mathrm{F}(\mathrm{X})=2 x+3$, Find $\mathrm{F}^{\prime}(\mathrm{X})$
$Y=2 x+3$
$Y-3=2 x$
$\frac{\mathrm{y}-3}{2}=\mathrm{x} \Rightarrow \mathrm{F}^{\prime}(\mathrm{x})=\frac{x-3}{2}$
Compound function, this is where you combine two functions, by substituting one function into the other Example: $f(x)=2 x+3, g(x)=5 x-6$, find $g f(x)$
$g f(x)=5(2 x+3)-6=10 x+15-6$
$g f(x)=10 x+9$

Algebraic Fractions

The basic rules of fractions apply when algebra is involved, e.g. to add fractions they need the same denominator
$\frac{3 p}{p-5}-\frac{4}{2 p+1}=\frac{3 p \times(2 p+1)}{(p-5) \times(2 p+1)}-\frac{4 \times(p-5)}{(p-5) \times(2 p+1)}$ $=\frac{6 p^{2}+3 p}{(p-5) \times(2 p+1)}-\frac{4 p-20}{(p-5) \times(2 p+1)}$
$=\frac{6 p^{2}-p+20}{2 p^{2}-9 p-5}$
Hint: The way to a common denominator is by multiplying each fraction by the opposing fractions denominator.

Number $=n$,
Consecutive numbers $=\mathrm{n}, \mathrm{n}+1$, etc
Even number $=2 n$
Odd number $=2 n+1$,
To prove an expression is a multiple of n, then you must be able to factorise an n out of the expression
E.g. $12 n+9$ is a multiple of 3 because
$12 n+9=3(4 n+3)$ and anything multiplied by 3 is a multiple of 3 .

LITEBACY
Explain the following words:
Estimated mean-

Modal class interval-

A football team played six games.

Here are the number of goals they scored in each game:

The football team play one more game
The mean number of goals scored increases to 4
(c) Work out the number of goals scored in the seventh game

FLUENCY

4. Timothy asked 30 people how long it takes them to get to school

圆 The table shows some information about his results.

Time (t minutes)	Frequency
$0<\mathrm{t} \leq 10$	2
$10<\mathrm{t} \leq 20$	8
$20<\mathrm{t} \leq 30$	12
$30<\mathrm{t} \leq 40$	7
$40<\mathrm{t} \leq 50$	1

Work out an estimate for the mean time taken.

PBOBLEM SOLVING

Shown below are five cards which are arranged in order from smallest to largest

The range of the cards is 4
The median of the cards is 8 . The mean of the cards is 7 .

Work out the 4 missing numbers

Delta Unit 6: Vectors

Essential knowledge:

- Understand vector notation for geometric problems.
- Construct a geometrical proof using vectors

Key Words:

Vector, direction, magnitude, scalar, multiple, parallel, collinear, proof, ratio, column vector

Prior Knowledge:

- Understand column vectors
- Add and subtract column vectors
- Convert between ratios and fractions
- Manipulate fractions
- Construct a proof
- Find the length of a line using Pythagoras theorem
- Know the properties of triangles and quadrilaterals
- Manipulate algebraic expressions

Vector Notation

Vectors have both direction and magnitude. You combine two vectors (adding them) Diagram NOT
iccurately drawn
$O A B$ is a triangle.
$\overrightarrow{O A}=$
$\overrightarrow{O B}=\mathrm{b}$
(a) Find $\overrightarrow{A B}$ in terms of \mathbf{a} and \mathbf{b}.

To go from A to B , we go A to $\mathrm{O}(-\mathrm{a})$ then O to B (b)

$$
\overrightarrow{\mathrm{AB}}=\mathrm{b}-\mathrm{a}
$$

P is the point on $A B$ such that $A P: P B=3: 1$
(b) Find $\overrightarrow{O P}$ in terms of \mathbf{a} and \mathbf{b}.

Give your answer in its simplest form.
$\overrightarrow{\mathrm{AP}}$ is $\frac{3}{4}$ the distance of AB , therefore

$$
\overrightarrow{\mathrm{AP}}=\frac{3}{4}(\boldsymbol{b}-\boldsymbol{a})
$$

Vector Proofs

To prove that 2 vectors are parallel you need to show that one is a multiple of another

Example:

$O A B$ is a triangle
$\overrightarrow{O A}=2 \mathbf{a}$
$\overrightarrow{O B}=3 \mathbf{b}$
P is the point on $A B$ such that $A P: P B=2: 3$
(b) Show that $\overrightarrow{O P}$ is parallel to the vector $\mathbf{a}+\mathbf{b}$

$$
\begin{gathered}
\overrightarrow{\mathrm{AB}}=3 \mathrm{~b}-2 \mathrm{a}, \overrightarrow{\mathrm{AP}}=\frac{2}{5}(3 \mathrm{~b}-2 \mathrm{a}) \\
\overrightarrow{\mathrm{OP}}=\overrightarrow{\mathrm{OA}}+\overrightarrow{\mathrm{AP}}=2 \mathrm{a}+\frac{2}{5}(3 \mathrm{~b}-2 \mathrm{a})=2 \mathrm{a}+\frac{6}{5} \mathrm{~b}-\frac{4}{5} \mathrm{~b} \\
\overrightarrow{\mathrm{OP}}=\frac{6}{5} \mathrm{a}+\frac{6}{5} \mathrm{~b}=\frac{6}{5}(\mathrm{a}+\mathrm{b})
\end{gathered}
$$

Therefore, OP is parallel to $\mathrm{a}+\mathrm{b}$
To prove that 3 points are in a straight line, e.g. MNC you show that MN is a multiple of MC, therefore parallel and using a common point

LITEBACY

Write the definition of collinear.

FLUENCY

The vector \mathbf{a} and the vector \mathbf{b} are shown on the grid.
(a) On the grid, draw and label vector - 2 a
(b) Work out $\mathbf{a}+2 \mathbf{b}$ as a column vector.

PROBLEM SOLVING

APB is a triangle
N is a point on $A P$
(a) Find the vector $\overrightarrow{P B}$ in terms of \mathbf{a} and \mathbf{b}.
B is the midpoint of $A C$
M is the midpoint of $P B$
(b) Show that NMC is a straight line.

